Solveeit Logo

Question

Question: How do you find the derivative of the function \(\dfrac{{{e}^{4x}}}{x}\)?...

How do you find the derivative of the function e4xx\dfrac{{{e}^{4x}}}{x}?

Explanation

Solution

We start solving the problem by equating the given function to a variable. We then make use of the fact that the derivative of the function uv\dfrac{u}{v} as ddx(uv)=vdudxudvdxv2\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}} to proceed through the problem. We then make use of the facts that ddx(eax)=aeax\dfrac{d}{dx}\left( {{e}^{ax}} \right)=a{{e}^{ax}} and ddx(x)=1\dfrac{d}{dx}\left( x \right)=1 to proceed further through the problem. We then make the necessary calculations in the obtained result to get the required answer for the given problem.

Complete step by step answer:
According to the problem, we are asked to find the derivative of the function e4xx\dfrac{{{e}^{4x}}}{x}.
Let us assume y=e4xxy=\dfrac{{{e}^{4x}}}{x} ---(1).
Let us differentiate both sides of equation (1) with respect to x.
dydx=ddx(e4xx)\Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( \dfrac{{{e}^{4x}}}{x} \right) ---(2).
We know that the derivative of the function uv\dfrac{u}{v} is defined as ddx(uv)=vdudxudvdxv2\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}. Let us use this result in equation (2).
dydx=xddx(e4x)e4xddx(x)x2\Rightarrow \dfrac{dy}{dx}=\dfrac{x\dfrac{d}{dx}\left( {{e}^{4x}} \right)-{{e}^{4x}}\dfrac{d}{dx}\left( x \right)}{{{x}^{2}}} ---(3).
We know that ddx(eax)=aeax\dfrac{d}{dx}\left( {{e}^{ax}} \right)=a{{e}^{ax}} and ddx(x)=1\dfrac{d}{dx}\left( x \right)=1. Let us use these results in equation (3).
dydx=x(4e4x)e4x(1)x2\Rightarrow \dfrac{dy}{dx}=\dfrac{x\left( 4{{e}^{4x}} \right)-{{e}^{4x}}\left( 1 \right)}{{{x}^{2}}}.
dydx=4xe4xe4xx2\Rightarrow \dfrac{dy}{dx}=\dfrac{4x{{e}^{4x}}-{{e}^{4x}}}{{{x}^{2}}}.
dydx=e4x(4x1)x2\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{4x}}\left( 4x-1 \right)}{{{x}^{2}}}.
So, we have found the derivative of the given function e4xx\dfrac{{{e}^{4x}}}{x} as e4x(4x1)x2\dfrac{{{e}^{4x}}\left( 4x-1 \right)}{{{x}^{2}}}.

\therefore The derivative of the given function e4xx\dfrac{{{e}^{4x}}}{x} is e4x(4x1)x2\dfrac{{{e}^{4x}}\left( 4x-1 \right)}{{{x}^{2}}}.

Note: We should perform each step carefully in order to avoid confusion and calculation mistakes while solving this problem. We can also solve the given problem as shown below:
We have y=e4xxy=\dfrac{{{e}^{4x}}}{x}.
y=e4x×1x\Rightarrow y={{e}^{4x}}\times \dfrac{1}{x} ---(4).
Let us differentiate both sides of equation (4) with respect to x.
dydx=ddx(e4x×1x)\Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{e}^{4x}}\times \dfrac{1}{x} \right) ---(5).
We know that the derivative of the function uvuv is defined as ddx(uv)=udvdx+vdudx\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}. Let us use this result in equation (5).
dydx=1xddx(e4x)e4xddx(1x)\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{x}\dfrac{d}{dx}\left( {{e}^{4x}} \right)-{{e}^{4x}}\dfrac{d}{dx}\left( \dfrac{1}{x} \right) ---(6).
We know that ddx(eax)=aeax\dfrac{d}{dx}\left( {{e}^{ax}} \right)=a{{e}^{ax}} and ddx(1x)=1x2\dfrac{d}{dx}\left( \dfrac{1}{x} \right)=\dfrac{-1}{{{x}^{2}}}. Let us use these results in equation (3).
dydx=e4x(1x2)+1x(4e4x)\Rightarrow \dfrac{dy}{dx}={{e}^{4x}}\left( \dfrac{-1}{{{x}^{2}}} \right)+\dfrac{1}{x}\left( 4{{e}^{4x}} \right).
dydx=e4xx2+4e4xx\Rightarrow \dfrac{dy}{dx}=\dfrac{-{{e}^{4x}}}{{{x}^{2}}}+\dfrac{4{{e}^{4x}}}{x}.
dydx=4xe4xe4xx2\Rightarrow \dfrac{dy}{dx}=\dfrac{4x{{e}^{4x}}-{{e}^{4x}}}{{{x}^{2}}}.
dydx=e4x(4x1)x2\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{4x}}\left( 4x-1 \right)}{{{x}^{2}}}.