Solveeit Logo

Question

Question: How do you find the derivative of \[\ln \left( 1+\left( \dfrac{1}{x} \right) \right)\]?...

How do you find the derivative of ln(1+(1x))\ln \left( 1+\left( \dfrac{1}{x} \right) \right)?

Explanation

Solution

This question is from the topic of differentiation of calculus chapter. In this question, we are going to find the derivative. We are going to use formulas of differentiation like ddxln(x)=1x\dfrac{d}{dx}\ln \left( x \right)=\dfrac{1}{x} and ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}. We will use chain rule here. The chain rule is used to differentiate the composite functions. The composite functions should be in the form of f(g(x)), where f(x) and g(x) are two different functions.

Complete step by step answer:
Let us solve this question.
In this question, we have to find the derivative ln(1+(1x))\ln \left( 1+\left( \dfrac{1}{x} \right) \right) or we can say we have to find the differentiation of ln(1+(1x))\ln \left( 1+\left( \dfrac{1}{x} \right) \right).
So, the differentiation of ln(1+(1x))\ln \left( 1+\left( \dfrac{1}{x} \right) \right) will be
ddxln(1+(1x))\dfrac{d}{dx}\ln \left( 1+\left( \dfrac{1}{x} \right) \right)
As we know that ddxln(x)=1x\dfrac{d}{dx}\ln \left( x \right)=\dfrac{1}{x}.
So, we can write
ddxln(1+(1x))=11+(1x)ddx(1+1x)\Rightarrow \dfrac{d}{dx}\ln \left( 1+\left( \dfrac{1}{x} \right) \right)=\dfrac{1}{1+\left( \dfrac{1}{x} \right)}\dfrac{d}{dx}\left(1+ \dfrac{1}{x} \right)
We have used chain rule in the above equation. The chain rule states that the derivative of f(g(x))f\left( g\left( x \right) \right)
Is f(g(x))×g(x)f'\left( g\left( x \right) \right)\times g'\left( x \right). The chain rule helps to differentiate composite functions. Here, we can see that ln(1+(1x))\ln \left( 1+\left( \dfrac{1}{x} \right) \right) is a composite function which is in the form of f(g(x))f\left( g\left( x \right) \right) where g(x) is the function of x that is 1x\dfrac{1}{x} here and f(x) is the function of ln\ln (that is log base e).
Till now, we have got the equation of differentiation as
ddxln(1+(1x))=11+(1x)ddx(1+1x)\Rightarrow \dfrac{d}{dx}\ln \left( 1+\left( \dfrac{1}{x} \right) \right)=\dfrac{1}{1+\left( \dfrac{1}{x} \right)}\dfrac{d}{dx}\left(1+ \dfrac{1}{x} \right)
We will use the formula ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}} in the above equation. This formula can be written as ddx(1x)=ddx(x1)=(1)x11=x2=1x2\dfrac{d}{dx}\left( \dfrac{1}{x} \right)=\dfrac{d}{dx}\left( {{x}^{-1}} \right)=(-1){{x}^{-1-1}}=-{{x}^{-2}}=-\dfrac{1}{{{x}^{2}}}
So, we can write the equation of differentiation as
ddxln(1+(1x))=11+(1x)(1x2)\Rightarrow \dfrac{d}{dx}\ln \left( 1+\left( \dfrac{1}{x} \right) \right)=\dfrac{1}{1+\left( \dfrac{1}{x} \right)}\left( -\dfrac{1}{{{x}^{2}}} \right)
The above equation can also be written as
ddxln(1+(1x))=xx+1(1x2)=xx+1(1x×x)=1x+1(1x)=(1x(x+1))\Rightarrow \dfrac{d}{dx}\ln \left( 1+\left( \dfrac{1}{x} \right) \right)=\dfrac{x}{x+1}\left( -\dfrac{1}{{{x}^{2}}} \right)=\dfrac{x}{x+1}\left( -\dfrac{1}{x\times x} \right)=\dfrac{1}{x+1}\left( -\dfrac{1}{x} \right)=-\left( \dfrac{1}{x(x+1)} \right)
The above equation can also be written as
ddxln(1+(1x))=1x2+x\Rightarrow \dfrac{d}{dx}\ln \left( 1+\left( \dfrac{1}{x} \right) \right)=\dfrac{-1}{{{x}^{2}}+x}

Hence, we get that the derivative of the term ln(1+(1x))\ln \left( 1+\left( \dfrac{1}{x} \right) \right) is 1x2+x\dfrac{-1}{{{x}^{2}}+x}.

Note: We have an alternate method to solve this question.
We can write 1+1x1+\dfrac{1}{x} as x+1x\dfrac{x+1}{x}.
So, ln(1+(1x))\ln \left( 1+\left( \dfrac{1}{x} \right) \right) can be written as ln(x+1x)\ln \left( \dfrac{x+1}{x} \right)
We know that ln(ab)=lnalnb\ln \left( \dfrac{a}{b} \right)=\ln a-\ln b
So, ln(x+1x)\ln \left( \dfrac{x+1}{x} \right) can be written as (ln(x+1)lnx)\left( \ln \left( x+1 \right)-\ln x \right)
Now, we will differentiate the term (ln(x+1)lnx)\left( \ln \left( x+1 \right)-\ln x \right)
ddx(ln(x+1)lnx)\dfrac{d}{dx}\left( \ln \left( x+1 \right)-\ln x \right)
As we know that ddxln(x)=1x\dfrac{d}{dx}\ln \left( x \right)=\dfrac{1}{x}. So, the differentiation can be written as
ddx(ln(x+1)lnx)=1x+11x=x(x+1)x(x+1)\Rightarrow \dfrac{d}{dx}\left( \ln \left( x+1 \right)-\ln x \right)=\dfrac{1}{x+1}-\dfrac{1}{x}=\dfrac{x-(x+1)}{x(x+1)}
The above equation can be written as
ddx(ln(x+1)lnx)=1x(x+1)=1x2+x\Rightarrow \dfrac{d}{dx}\left( \ln \left( x+1 \right)-\ln x \right)=\dfrac{-1}{x(x+1)}=\dfrac{-1}{{{x}^{2}}+x}