Solveeit Logo

Question

Question: How do you find the derivative of \(\left( {{\sin }^{2}}x \right)\left( {{\cos }^{3}}x \right)\)?...

How do you find the derivative of (sin2x)(cos3x)\left( {{\sin }^{2}}x \right)\left( {{\cos }^{3}}x \right)?

Explanation

Solution

As the given function is the product of two functions so first we will use the product formula which is given by ddx(uv)=uddxv+vddxu\dfrac{d}{dx}\left( uv \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u. Also the given function is a composite function so we will use the chain rule to find the derivative. We will also use power rule ddx(xn)=n×xn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}, sine formula ddx(sinx)=cosx\dfrac{d}{dx}(\sin x)=\cos xand cos formula ddx(cosx)=sinx\dfrac{d}{dx}(\cos x)=-\sin x to solve further.

Complete step-by-step solution:
We have been given a function (sin2x)(cos3x)\left( {{\sin }^{2}}x \right)\left( {{\cos }^{3}}x \right).
We have to find a derivative of the given function.
Let us assume that y=(sin2x)(cos3x)y=\left( {{\sin }^{2}}x \right)\left( {{\cos }^{3}}x \right)
Now, the given function is the product of two functions so first we apply the product formula which is given as ddx(uv)=uddxv+vddxu\dfrac{d}{dx}\left( uv \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u.
Differentiating the given function with respect to x and applying the formula we will get
dydx=ddx(sin2x)(cos3x) dydx=(sin2x)ddx(cos3x)+(cos3x)ddx(sin2x) \begin{aligned} & \Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{\sin }^{2}}x \right)\left( {{\cos }^{3}}x \right) \\\ & \Rightarrow \dfrac{dy}{dx}=\left( {{\sin }^{2}}x \right)\dfrac{d}{dx}\left( {{\cos }^{3}}x \right)+\left( {{\cos }^{3}}x \right)\dfrac{d}{dx}\left( {{\sin }^{2}}x \right) \\\ \end{aligned}
Now, the functions (sin2x)\left( {{\sin }^{2}}x \right) and (cos3x)\left( {{\cos }^{3}}x \right)are composite functions so we apply the chain rule.
Also we know that ddx(xn)=n×xn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}, ddx(sinx)=cosx\dfrac{d}{dx}(\sin x)=\cos x and ddx(cosx)=sinx\dfrac{d}{dx}(\cos x)=-\sin x
So applying the above formulas and substituting the values we will get
dydx=(sin2x)3cos2x(sinx)+(cos3x)2sinx(cosx)\Rightarrow \dfrac{dy}{dx}=\left( {{\sin }^{2}}x \right)3{{\cos }^{2}}x\left( -\sin x \right)+\left( {{\cos }^{3}}x \right)2\sin x\left( \cos x \right)
Now, simplifying the above obtained equations we will get
dydx=3sin3xcos2x+2cos4xsinx dydx=2cos4xsinx3sin3xcos2x \begin{aligned} & \Rightarrow \dfrac{dy}{dx}=-3{{\sin }^{3}}x{{\cos }^{2}}x+2{{\cos }^{4}}x\sin x \\\ & \Rightarrow \dfrac{dy}{dx}=2{{\cos }^{4}}x\sin x-3{{\sin }^{3}}x{{\cos }^{2}}x \\\ \end{aligned}
Hence we get the derivative of (sin2x)(cos3x)\left( {{\sin }^{2}}x \right)\left( {{\cos }^{3}}x \right) as 2cos4xsinx3sin3xcos2x2{{\cos }^{4}}x\sin x-3{{\sin }^{3}}x{{\cos }^{2}}x.

Note: Here in this question we use both product rule and chain rule. Both are different so don’t be confused and it is necessary to have a clear idea about both. We cannot directly differentiate the product of functions or a composite function. The question is lengthy so be careful while applying the formula and be careful while doing calculations.