Solveeit Logo

Question

Question: How do you find the derivative of \({\left( {\ln \left( {{x^2} + 3} \right)} \right)^3}\)?...

How do you find the derivative of (ln(x2+3))3{\left( {\ln \left( {{x^2} + 3} \right)} \right)^3}?

Explanation

Solution

First find the differentiation of x2+3{x^2} + 3 with respect to xx. Then, find the differentiation of ln(x2+3)\ln \left( {{x^2} + 3} \right) with respect to x2+3{x^2} + 3. Then, find the differentiation of (ln(x2+3))3{\left( {\ln \left( {{x^2} + 3} \right)} \right)^3} with respect to ln(x2+3)\ln \left( {{x^2} + 3} \right). Multiply these and use chain rule to get the required derivative.

Formula used: Chain Rule:
Chain rule is applied when the given function is the function of function i.e.,
if y is a function of x, then dydx=dydu×dudx\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \times \dfrac{{du}}{{dx}} or dydx=dydu×dudv×dvdx\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \times \dfrac{{du}}{{dv}} \times \dfrac{{dv}}{{dx}}.
If f(x)f\left( x \right)and g(x)g\left( x \right)are differentiable functions and c is a constant.
dxndx=nxn1\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}
df(x)ndx=nf(x)n1ddxf(x)\dfrac{{df{{(x)}^n}}}{{dx}} = nf{(x)^{n - 1}}\dfrac{d}{{dx}}f(x)
d(c)dx=0\dfrac{{d\left( c \right)}}{{dx}} = 0
\dfrac{d}{{dx}}\left\\{ {cf\left( x \right)} \right\\} = c \times \dfrac{d}{{dx}}\left( {f\left( x \right)} \right)
ddx[f(x)g(x)]=f(x)ddxg(x)+g(x)ddxf(x)\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)
ddx[f(x)±g(x)]=ddxf(x)±ddxg(x)\dfrac{d}{{dx}}\left[ {f\left( x \right) \pm g\left( x \right)} \right] = \dfrac{d}{{dx}}f\left( x \right) \pm \dfrac{d}{{dx}}g\left( x \right)
ddx(logx)=1x\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}

Complete step by step solution:
We have to find the derivative of (ln(x2+3))3{\left( {\ln \left( {{x^2} + 3} \right)} \right)^3}.
Here,f(x)=(g(x))3f\left( x \right) = {\left( {g\left( x \right)} \right)^3}, where g(x)=ln(h(x))g\left( x \right) = \ln \left( {h\left( x \right)} \right) and h(x)=x2+3h\left( x \right) = {x^2} + 3.
We have to find the differentiation of ff with respect to xx.
It can be done using Chain Rule.
dfdx=dfdg×dgdh×dhdx  (1)\dfrac{{df}}{{dx}} = \dfrac{{df}}{{dg}} \times \dfrac{{dg}}{{dh}} \times \dfrac{{dh}}{{dx}}\; \ldots \ldots \left( 1 \right)
i.e., Differentiation of ff with respect to xx is equal to product of differentiation of ff with respect to gg, and differentiation of gg with respect to hh, and differentiation of hh with respect to xx.
We will first find the differentiation of hh with respect to xx.
Here, h(x)=x2+3h\left( x \right) = {x^2} + 3
Differentiating hh with respect to xx.
dhdx=ddx(x2+3)\dfrac{{dh}}{{dx}} = \dfrac{d}{{dx}}\left( {{x^2} + 3} \right)
By the Sum Rule, ddx[f(x)+g(x)]=ddxf(x)+ddxg(x)\dfrac{d}{{dx}}\left[ {f\left( x \right) + g\left( x \right)} \right] = \dfrac{d}{{dx}}f\left( x \right) + \dfrac{d}{{dx}}g\left( x \right)
The derivative of x2+3{x^2} + 3 with respect to xx is ddx(x2)+ddx(3)\dfrac{d}{{dx}}\left( {{x^2}} \right) + \dfrac{d}{{dx}}\left( 3 \right).
dhdx=ddx(x2)+ddx(3)\Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{d}{{dx}}\left( {{x^2}} \right) + \dfrac{d}{{dx}}\left( 3 \right)
Differentiate using the Power Rule which states thatdxndx=nxn1\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}.
dhdx=2x+ddx(3)\Rightarrow \dfrac{{dh}}{{dx}} = 2x + \dfrac{d}{{dx}}\left( 3 \right)
Since 33 is constant with respect to xx, the derivative of 33 with respect to xx is 00.
dhdx=2x  (2)\Rightarrow \dfrac{{dh}}{{dx}} = 2x\; \ldots \ldots \left( 2 \right)
Now, we will find the differentiation of gg with respect to hh.
Here, g(x)=ln(h(x))g\left( x \right) = \ln \left( {h\left( x \right)} \right)
Differentiating gg with respect to hh.
dgdh=ddx(ln(h(x)))\Rightarrow \dfrac{{dg}}{{dh}} = \dfrac{d}{{dx}}\left( {\ln \left( {h\left( x \right)} \right)} \right)
The derivative of logarithm function is ddx(logx)=1x\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}.
dgdh=1h(x)\Rightarrow \dfrac{{dg}}{{dh}} = \dfrac{1}{{h\left( x \right)}}
Put the value of h(x)h\left( x \right) in the above equation.
Since, h(x)=x2+3h\left( x \right) = {x^2} + 3
So, dgdh=1x2+3  (3)\dfrac{{dg}}{{dh}} = \dfrac{1}{{{x^2} + 3}}\; \ldots \ldots \left( 3 \right)
Now, we will find the differentiation of ff with respect to gg.
Here, f(x)=(g(x))3f\left( x \right) = {\left( {g\left( x \right)} \right)^3}
Differentiating ff with respect to gg
dfdg=ddx(g(x))3\Rightarrow \dfrac{{df}}{{dg}} = \dfrac{d}{{dx}}{\left( {g\left( x \right)} \right)^3}
Differentiate using the Power Rule which states that dxndx=nxn1\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}.
dfdg=3(g(x))2\Rightarrow \dfrac{{df}}{{dg}} = 3{\left( {g\left( x \right)} \right)^2}
Put the value of g(x)g\left( x \right) in the above equation.
Since, g(x)=ln(h(x))g\left( x \right) = \ln \left( {h\left( x \right)} \right) and h(x)=x2+3h\left( x \right) = {x^2} + 3
So, dfdg=3(ln(x2+3))2.(4)\dfrac{{df}}{{dg}} = 3{\left( {\ln \left( {{x^2} + 3} \right)} \right)^2} \ldots \ldots .\left( 4 \right)
Put the value of dfdg,dgdh,dhdx\dfrac{{df}}{{dg}},\dfrac{{dg}}{{dh}},\dfrac{{dh}}{{dx}} from Equation (2), (3) and (4) in Equation (1).
dfdx=3(ln(x2+3))2×1x2+3×2x\Rightarrow \dfrac{{df}}{{dx}} = 3{\left( {\ln \left( {{x^2} + 3} \right)} \right)^2} \times \dfrac{1}{{{x^2} + 3}} \times 2x
Multiplying the terms, we get
dfdx=6x(ln(x2+3))2x2+3\Rightarrow \dfrac{{df}}{{dx}} = \dfrac{{6x{{\left( {\ln \left( {{x^2} + 3} \right)} \right)}^2}}}{{{x^2} + 3}}

Therefore, the derivative of (ln(x2+3))3{\left( {\ln \left( {{x^2} + 3} \right)} \right)^3}is 6x(ln(x2+3))2x2+3\dfrac{{6x{{\left( {\ln \left( {{x^2} + 3} \right)} \right)}^2}}}{{{x^2} + 3}}.

Note: In calculus, a chain rule is the basic method for differentiating a composite function. If f(x)f\left( x \right) and g(x)g\left( x \right) are two functions, the function f(g(x))f\left( {g\left( x \right)} \right) is calculated for a value of xx by first evaluating g(x)g\left( x \right) and then evaluating the function ff at this value of g(x)g\left( x \right), thus “chaining” the results together.