Solveeit Logo

Question

Question: How do you find the derivative of \[h\left( x \right) = \ln \left( {\cosh \left( {2x} \right)} \righ...

How do you find the derivative of h(x)=ln(cosh(2x))h\left( x \right) = \ln \left( {\cosh \left( {2x} \right)} \right) ?

Explanation

Solution

Hint : Given is a hyperbolic function. To find the derivative we will use a method of substitution and chain rule for the solution because the function is a composite function that has two different functions . We will consider u=cosh(2x)u = \cosh \left( {2x} \right) . Then using the chain rule dydx=dydu×dudx\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \times \dfrac{{du}}{{dx}} , we will find the derivative. We will substitute the value of u. This will be the way to solve it.

Complete step-by-step answer :
Given that,
h(x)=ln(cosh(2x))h\left( x \right) = \ln \left( {\cosh \left( {2x} \right)} \right)
Consider, y=h(x)=ln(cosh(2x))y = h\left( x \right) = \ln \left( {\cosh \left( {2x} \right)} \right)
We know that, product rule is written as,
dydx=dydu×dudx\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \times \dfrac{{du}}{{dx}}
We will find the two factors of the product.
Putting u=cosh(2x)u = \cosh \left( {2x} \right)
ddxcosh(2x)=2sinh(2x)\dfrac{d}{{dx}}\cosh \left( {2x} \right) = 2\sinh \left( {2x} \right)
dudx=2sinh(2x)\dfrac{{du}}{{dx}} = 2\sinh \left( {2x} \right)
Putting the value of u,
y=lnuy = \ln u
Finding the derivative,
dydu=1u\dfrac{{dy}}{{du}} = \dfrac{1}{u}
Putting the values in the chain rule;
dydx=1u×2sinh(2x)\dfrac{{dy}}{{dx}} = \dfrac{1}{u} \times 2\sinh \left( {2x} \right)
Substitute the value of u,
dydx=2sinh(2x)cosh(2x)\dfrac{{dy}}{{dx}} = \dfrac{{2\sinh \left( {2x} \right)}}{{\cosh \left( {2x} \right)}}
Ratio of sin to cos is tan,
dydx=2tanh(2x)\dfrac{{dy}}{{dx}} = 2\tanh \left( {2x} \right)
This is the correct answer.
So, the correct answer is “dydx=2tanh(2x)\dfrac{{dy}}{{dx}} = 2\tanh \left( {2x} \right) ”.

Note : Note that the given function is hyperbolic function. This given function is a combination of two such functions. So we have used chain rule. In that, we have two derivatives. Hyperbolic functions are the trigonometric functions that use a hyperbola to define the function rather than using a circle.