Solveeit Logo

Question

Question: How do you find the derivative of: \( f(x) = \sqrt {x + 1} \) using the limit definition?...

How do you find the derivative of: f(x)=x+1f(x) = \sqrt {x + 1} using the limit definition?

Explanation

Solution

Hint : In order to determine the derivative of f(x)f(x) with respect to variable x , use the formula of limit definition f(x)=limh0f(x+h)f(x)hf'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} . To find the f(x+h)f\left( {x + h} \right) replace all the xx with x+hx + h in the original function . Now to calculate the limit multiply and divide the limit with x+h+1+x+1\sqrt {x + h + 1} + \sqrt {x + 1} and use the identity (a+b)(ab)=a2b2\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2} to simplify the numerator and now put the limit h=0h = 0 to obtain your required derivative.

Complete step-by-step answer :
We are given a function in variable xx i.e.
f(x)=x+1f(x) = \sqrt {x + 1}
Let’s look into the formula of limit definition to find the derivative of f(x)f(x) with respect to x
ddx(f(x))=f(x)=limh0f(x+h)f(x)h\dfrac{d}{{dx}}\left( {f(x)} \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}
f(x)=x+1f(x) = \sqrt {x + 1} --(1)
To find the f(x+h)f\left( {x + h} \right) replace all the xx with x+hx + h in the equation (1), we get
f(x+h)=x+h+1f(x + h) = \sqrt {x + h + 1}
Now putting f(h)f\left( h \right) and f(x+h)f\left( {x + h} \right) in the formula ,

f(x)=limh0f(x+h)f(x)h f(x)=limh0x+h+1x+1h  f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \\\ f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sqrt {x + h + 1} - \sqrt {x + 1} }}{h} \\\

As you can see this is the limit problem, so if we directly put the limit h0h \to 0 the result will have a denominator equal to zero which is completely not acceptable as it gives the result as infinity.
So to avoid this thing , multiply divide the equation x+h+1+x+1\sqrt {x + h + 1} + \sqrt {x + 1} , we get
f(x)=limh0x+h+1x+1h×x+h+1+x+1x+h+1+x+1f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sqrt {x + h + 1} - \sqrt {x + 1} }}{h} \times \dfrac{{\sqrt {x + h + 1} + \sqrt {x + 1} }}{{\sqrt {x + h + 1} + \sqrt {x + 1} }}
Now applying the identity of (a+b)(ab)=a2b2\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2} by considering aa as x+h+1\sqrt {x + h + 1} and bb as x+1\sqrt {x + 1} in the numerator

f(x)=limh0(x+h+1)2(x+1)2h(x+h+1+x+1) f(x)=limh0(x+h+1)(x+1)h(x+h+1+x+1) f(x)=limh0x+h+1x1h(x+h+1+x+1) f(x)=limh0hh(x+h+1+x+1) f(x)=limh01(x+h+1+x+1)   f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\left( {\sqrt {x + h + 1} } \right)}^2} - {{\left( {\sqrt {x + 1} } \right)}^2}}}{{h\left( {\sqrt {x + h + 1} + \sqrt {x + 1} } \right)}} \\\ f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {x + h + 1} \right) - \left( {x + 1} \right)}}{{h\left( {\sqrt {x + h + 1} + \sqrt {x + 1} } \right)}} \\\ f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{x + h + 1 - x - 1}}{{h\left( {\sqrt {x + h + 1} + \sqrt {x + 1} } \right)}} \\\ f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{{h\left( {\sqrt {x + h + 1} + \sqrt {x + 1} } \right)}} \\\ f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{\left( {\sqrt {x + h + 1} + \sqrt {x + 1} } \right)}} \;

Now putting the limit h=0h = 0 , we get

f(x)=1(x+0+1+x+1) f(x)=1(x+1+x+1) f(x)=12x+1   f'\left( x \right) = \dfrac{1}{{\left( {\sqrt {x + 0 + 1} + \sqrt {x + 1} } \right)}} \\\ f'\left( x \right) = \dfrac{1}{{\left( {\sqrt {x + 1} + \sqrt {x + 1} } \right)}} \\\ f'\left( x \right) = \dfrac{1}{{2\sqrt {x + 1} }} \;

Therefore the derivative of f(x)=x+1f(x) = \sqrt {x + 1} using the limit definition is equal to 12x+1\dfrac{1}{{2\sqrt {x + 1} }} .
So, the correct answer is “ 12x+1\dfrac{1}{{2\sqrt {x + 1} }} ”.

Note : 1. Don’t forget to cross-check your answer.
2.After putting the Limit the result should never contain zero in the denominator. If it is contained, apply some operation to modify the result and then after put the limit.
3. Derivative is the inverse of integration .