Solveeit Logo

Question

Question: How do you find the derivative of \({e^{\dfrac{1}{{2x}}}}\) ?...

How do you find the derivative of e12x{e^{\dfrac{1}{{2x}}}} ?

Explanation

Solution

In this question, we are given a line whose equation is y - 5 = 3(x - 2){\text{y - 5 = 3(x - 2)}} and we have been asked to find out or change the equation into intercept form. We can form it to its slope intercept form of the given equation y - 5 = 3(x - 2){\text{y - 5 = 3(x - 2)}} by substituting the values in the given formula.

Formulas used:
For any equation Ax+ By +  C  =  0{\text{Ax}} + {\text{ By }} + \;{\text{C}}\; = \;0 ,
Slope (m) = AB\dfrac{{ - {\text{A}}}}{{\text{B}}}
Slope intercepts form:
y = mx + b{\text{y = mx + b}}

Complete step-by-step answer:
We have to find the derivative of e12x{e^{\dfrac{1}{{2x}}}} .
To derive ee , we use this formula ddxex=ex\dfrac{d}{{dx}}{e^x} = {e^x} .
Since, in the given question, there is a variable, it also should be derivative according to the rule or formula in derivative ddxe2x=2e2x\dfrac{d}{{dx}}{e^{2x}} = 2{e^{2x}} .
So now, derivation of e12x{e^{\dfrac{1}{{2x}}}} ,
Using the formula, we first derivate e12x{e^{\dfrac{1}{{2x}}}} and then, the variable 12x\dfrac{1}{{2{\text{x}}}} ,
ddxe12x=e12xddx12x\dfrac{d}{{dx}}{e^{\dfrac{1}{{2x}}}} = {e^{\dfrac{1}{{2x}}}} \cdot \dfrac{d}{{dx}}\dfrac{1}{{2{\text{x}}}}
Now, using the formula of derivation of ddx(uv)\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) , we get
ddxe12x=e12xddx(1)(2x) - ddx(2x)(1)(2x)2\dfrac{d}{{dx}}{e^{\dfrac{1}{{2x}}}} = {e^{\dfrac{1}{{2x}}}} \cdot \dfrac{{\dfrac{d}{{dx}}(1) \cdot (2{\text{x) - }}\dfrac{d}{{dx}}(2{\text{x)}} \cdot (1)}}{{{{\left( {2{\text{x}}} \right)}^2}}}
Derivate and simplifying the term we get,
ddxe12x= e12x02(1)4x2\dfrac{d}{{dx}}{e^{\dfrac{1}{{2x}}}} = {\text{ }}{e^{\dfrac{1}{{2x}}}} \cdot \dfrac{{0 - 2(1)}}{{{\text{4}}{{\text{x}}^2}}}
Since 22 is multiple of 44 , we can cancel it.
ddxe12x= e12x24x2\dfrac{d}{{dx}}{e^{\dfrac{1}{{2x}}}} = {\text{ }}{e^{\dfrac{1}{{2x}}}} \cdot \dfrac{{ - 2}}{{{\text{4}}{{\text{x}}^2}}}
ddxe12x= 12x2e12x\dfrac{d}{{dx}}{e^{\dfrac{1}{{2x}}}} = {\text{ }} - \dfrac{1}{{{\text{2}}{{\text{x}}^2}}}{e^{\dfrac{1}{{2x}}}}
Therefore, derivative of e12x{e^{\dfrac{1}{{2x}}}}is 12x2e12x{\text{ }} - \dfrac{1}{{{\text{2}}{{\text{x}}^2}}}{e^{\dfrac{1}{{2x}}}}.

Note:
Alternative method:
We can solve this question using the logarithm method. First, let us assume the given question as some variable.
Let e12x{e^{\dfrac{1}{{2x}}}} bey{\text{y}},
y = e12x{\text{y = }}{e^{\dfrac{1}{{2x}}}}
Now, we will solve this by using the logarithm method.
Taking log\log on both the sides, we get
y = e12x{\text{y = }}{e^{\dfrac{1}{{2x}}}} Becomes log y = log e12x{\text{log y = log }}{e^{\dfrac{1}{{2x}}}} and now,
log y = log e12x{\text{log y = log }}{e^{\dfrac{1}{{2x}}}}
Using the property of logarithm, the power of ee will be multiplied to the term,
log y = 12xlog e{\text{log y = }}\dfrac{1}{{2{\text{x}}}}{\text{log }}e
Now, taking derivative on both the sides, we get
Since we finding derivation of the given term with respect to x{\text{x}} , derivation of y{\text{y}} is dydx\dfrac{{dy}}{{dx}}
Using the derivation of logarithm formula, we get
1ydydx = (ddx log e)(ddx12x)\dfrac{1}{{\text{y}}}\dfrac{{dy}}{{dx}}{\text{ = }}\left( {\dfrac{d}{{dx}}{\text{ log }}e} \right)\left( {\dfrac{d}{{dx}}\dfrac{1}{{2{\text{x}}}}} \right)
We know that (ddx log e)=1\left( {\dfrac{d}{{dx}}{\text{ log }}e} \right) = 1and ddx(uv)=ddxu.v - ddxv.uv2\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{\dfrac{d}{{dx}}u.v{\text{ - }}\dfrac{d}{{dx}}v.u}}{{{v^2}}}we get,
1ydydx = 1.(ddx(1)(2x) - ddx(2x)(1)(2x)2)\dfrac{1}{{\text{y}}}\dfrac{{dy}}{{dx}}{\text{ = }}1.\left( {\dfrac{{\dfrac{d}{{dx}}(1) \cdot (2{\text{x) - }}\dfrac{d}{{dx}}(2{\text{x)}} \cdot (1)}}{{{{\left( {2{\text{x}}} \right)}^2}}}} \right)
Simplifying the term,
1ydydx = 02(1)4x2\dfrac{1}{{\text{y}}}\dfrac{{dy}}{{dx}}{\text{ = }}\dfrac{{0 - 2(1)}}{{{\text{4}}{{\text{x}}^2}}}
1ydydx = 24x2\dfrac{1}{{\text{y}}}\dfrac{{dy}}{{dx}}{\text{ = }}\dfrac{{ - 2}}{{{\text{4}}{{\text{x}}^2}}}
1ydydx = 12x2\dfrac{1}{{\text{y}}}\dfrac{{dy}}{{dx}}{\text{ = }}\dfrac{{ - 1}}{{{\text{2}}{{\text{x}}^2}}}
Now transferring y{\text{y}} to the other side,
dydx = (y)12x2\dfrac{{dy}}{{dx}}{\text{ = (y)}}\dfrac{{ - 1}}{{{\text{2}}{{\text{x}}^2}}}
We know that y = e12x{\text{y = }}{e^{\dfrac{1}{{2x}}}}, substituting it, it becomes
dydx = 12x2.e12x\dfrac{{dy}}{{dx}}{\text{ = }}\dfrac{{ - 1}}{{{\text{2}}{{\text{x}}^2}}}.{e^{\dfrac{1}{{2x}}}}is the required answer.