Solveeit Logo

Question

Question: How do you find the derivative of \(\dfrac{x}{{{x^2} - 4}}\) ?...

How do you find the derivative of xx24\dfrac{x}{{{x^2} - 4}} ?

Explanation

Solution

We can find the derivative of the given expression simply by applying the Quotient Rule of Derivative and simplifying it further.

Formula used:
Quotient Rule: y=g(x)×f(x)f(x)×g(x)(g(x))2y' = \dfrac{{g(x) \times f'(x) - f(x) \times g'(x)}}{{{{(g(x))}^2}}}

Complete step by step answer:
We will find the derivative of the given expression using Quotient Rule:
Explaining Quotient Rule:
Suppose we have:
y=f(x)g(x)\Rightarrow y = \dfrac{{f(x)}}{{g(x)}}
Then, using the Quotient Rule:
y=g(x)f(x)f(x)×g(x)(g(x))2\Rightarrow y' = \dfrac{{g(x)f'(x) - f(x) \times g'(x)}}{{{{\left( {g\left( x \right)} \right)}^2}}}
In simple words, you take the derivative of f(x) multiplied by g(x), subtract f(x) multiplied by the derivative of g(x) and divide all that by (g(x))2{\left( {g\left( x \right)} \right)^2}.
Start by rewriting the expression:
ddx(xx24)\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right)
Simplify by using Quotient Rule explained above:
ddx(xx24)=((x24)(1))((x)(2x))(x24)2\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = \dfrac{{\left( {\left( {{x^2} - 4} \right)\left( 1 \right)} \right) - \left( {\left( x \right)\left( {2x} \right)} \right)}}{{{{\left( {{x^2} - 4} \right)}^2}}}
Simplify:
ddx(xx24)=((x24)(1))((x)(2x))(x24)2\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = \dfrac{{\left( {\left( {{x^2} - 4} \right)\left( 1 \right)} \right) - \left( {\left( x \right)\left( {2x} \right)} \right)}}{{{{\left( {{x^2} - 4} \right)}^2}}}
ddx(xx24)=(x24)2x2(x24)2\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = \dfrac{{\left( {{x^2} - 4} \right) - 2{x^2}}}{{{{\left( {{x^2} - 4} \right)}^2}}}
ddx(xx24)=x2+4(x24)2\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = - \dfrac{{{x^2} + 4}}{{{{\left( {{x^2} - 4} \right)}^2}}}

So the derivative of xx24\dfrac{x}{{{x^2} - 4}} is x2+4(x24)2 - \dfrac{{{x^2} + 4}}{{{{\left( {{x^2} - 4} \right)}^2}}}.

Note: The alternative method to find the derivative is by using product, power and chain rule.
Explanation:
ddx(xx24)\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right)
Solve by taking the inverse of the denominator:
ddx(xx24)=ddxx(x24)1\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = \dfrac{d}{{dx}}x{\left( {{x^2} - 4} \right)^{ - 1}}
Simplify using Product Rule:
Explaining Product rule:
Suppose we have:
y=f(x)×g(x)\Rightarrow y = f(x) \times g(x)
Then, using the Product rule:
y=f(x)×g(x)+f(x)×g(x)\Rightarrow y' = f(x) \times g'(x) + f'(x) \times g(x)
In simple words, keep the first term as it is and differentiate the second term, then differentiate the first term and keep the second term as it is or vice-versa.
ddx(xx24)=(ddxx)(x24)1+x(ddx(x24)1)\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = \left( {\dfrac{d}{{dx}}x} \right){\left( {{x^2} - 4} \right)^{ - 1}} + x\left( {\dfrac{d}{{dx}}{{\left( {{x^2} - 4} \right)}^{ - 1}}} \right)
After derivation, we get
ddx(xx24)=(x24)12x2(x24)2\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = {\left( {{x^2} - 4} \right)^{ - 1}} - 2{x^2}{\left( {{x^2} - 4} \right)^{ - 2}}
Now, using Power Rule and Chain Rule to simplify the above expression:
Explaining Power rule:
Suppose we have:
y=axn\Rightarrow y = a{x^n}
Then using Power rule:
y=(a×n)xn1\Rightarrow y' = (a \times n){x^{n - 1}}
In simple words, multiply the variable’s exponent n, by its coefficient a, then subtract 1 from the exponent. If there’s no coefficient (the coefficient is 1), then the exponent will become the new coefficient.
ddx(xx24)=(x24)2x2(x24)2\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = \dfrac{{\left( {{x^2} - 4} \right) - 2{x^2}}}{{{{\left( {{x^2} - 4} \right)}^2}}}
Simplify:
ddx(xx24)=x2+4(x24)2\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = - \dfrac{{{x^2} + 4}}{{{{\left( {{x^2} - 4} \right)}^2}}}
So the derivative of xx24\dfrac{x}{{{x^2} - 4}} is x2+4(x24)2 - \dfrac{{{x^2} + 4}}{{{{\left( {{x^2} - 4} \right)}^2}}}.
We will get the same result with both the methods but this method is quite long.