Solveeit Logo

Question

Question: How do you find the derivative of \(\dfrac{\sin x}{1+\cos x}\)?...

How do you find the derivative of sinx1+cosx\dfrac{\sin x}{1+\cos x}?

Explanation

Solution

In this problem we need to calculate the derivative of the given function. We can observe that the given function is a fraction with numerator sinx\sin x, denominator 1+cosx1+\cos x. In differentiation we have the formula ddx(uv)=uvuvv2\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{{{u}^{'}}v-u{{v}^{'}}}{{{v}^{2}}}. So, we will compare the given function with uv\dfrac{u}{v} and write the values of uu, vv. After knowing the values of uu, vv we will differentiate the both the values to get the values of u{{u}^{'}}, v{{v}^{'}}. After knowing the value of u{{u}^{'}}, v{{v}^{'}} we will use the division’s derivative formula and simplify the equation to get the required result.

Complete step by step solution:
Given that, sinx1+cosx\dfrac{\sin x}{1+\cos x}.
Comparing the above fraction with uv\dfrac{u}{v}, then we will get
u=sinxu=\sin x, v=1+cosxv=1+\cos x.
Considering the value u=sinxu=\sin x.
Differentiating the above equation with respect to xx, then we will get
dudx=ddx(sinx)\Rightarrow \dfrac{du}{dx}=\dfrac{d}{dx}\left( \sin x \right)
We have the differentiation formula ddx(sinx)=cosx\dfrac{d}{dx}\left( \sin x \right)=\cos x, then we will have
u=cosx\Rightarrow {{u}^{'}}=\cos x
Considering the value v=1+cosxv=1+\cos x.
Differentiating the above equation with respect to xx, then we will get
dvdx=ddx(1+cosx)\Rightarrow \dfrac{dv}{dx}=\dfrac{d}{dx}\left( 1+\cos x \right)
We know that the differentiation of constant is zero and ddx(cosx)=sinx\dfrac{d}{dx}\left( \cos x \right)=-\sin x, then we will have
v=sinx\Rightarrow {{v}^{'}}=-\sin x
Now the derivative of the given fraction is given by
ddx(sinx1+cosx)=uvuvv2 ddx(sinx1+cosx)=cosx(1+cosx)sinx(sinx)(1+cosx)2 \begin{aligned} & \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{{{u}^{'}}v-u{{v}^{'}}}{{{v}^{2}}} \\\ & \Rightarrow \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{\cos x\left( 1+\cos x \right)-\sin x\left( -\sin x \right)}{{{\left( 1+\cos x \right)}^{2}}} \\\ \end{aligned}
Simplifying the above equation, then we will have
ddx(sinx1+cosx)=cosx+cos2x+sin2x(1+cosx)2\Rightarrow \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{\cos x+{{\cos }^{2}}x+{{\sin }^{2}}x}{{{\left( 1+\cos x \right)}^{2}}}
We have the trigonometric identity sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1, then the above equation is modified as
ddx(sinx1+cosx)=1+cosx(1+cosx)2 ddx(sinx1+cosx)=11+cosx \begin{aligned} & \Rightarrow \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{1+\cos x}{{{\left( 1+\cos x \right)}^{2}}} \\\ & \Rightarrow \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{1}{1+\cos x} \\\ \end{aligned}

Hence the derivative of the given equation sinx1+cosx\dfrac{\sin x}{1+\cos x} is 11+cosx\dfrac{1}{1+\cos x}.

Note: In this problem we can observe that v=sinx=u{{v}^{'}}=-\sin x=-u. For this type of equation calculation of the integration is also simple. We have the integration formula f(x)f(x)dx=logf(x)+C\int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}dx}=\log \left| f\left( x \right) \right|+C. We will use this formula and simplify it to get the integration value.