Solveeit Logo

Question

Question: How do you find the derivative of \(\dfrac{1}{2}\sin 2x\)?...

How do you find the derivative of 12sin2x\dfrac{1}{2}\sin 2x?

Explanation

Solution

The given function 12sin2x\dfrac{1}{2}\sin 2x is a composite function. We have to use the chain rule for the derivation. We derive the main function with respect to the secondary one. Then we take the derivation of the secondary function with respect to xx. We take the multiplication of these two functions.

Complete step by step solution:
We differentiate the given function f(x)=12sin2xf\left( x \right)=\dfrac{1}{2}\sin 2x with respect to xx using the chain rule.
Here we have a composite function where the main function is g(x)=sinxg\left( x \right)=\sin x and the other function is h(x)=2xh\left( x \right)=2x.
We have goh(x)=g(2x)=sin2xgoh\left( x \right)=g\left( 2x \right)=\sin 2x. We take this as ours f(x)=12sin2xf\left( x \right)=\dfrac{1}{2}\sin 2x.
We need to find the value of ddx[f(x)]=ddx[12sin2x]\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ \dfrac{1}{2}\sin 2x \right]. We know f(x)=12goh(x)f\left( x \right)=\dfrac{1}{2}goh\left( x \right).
Differentiating f(x)=12goh(x)f\left( x \right)=\dfrac{1}{2}goh\left( x \right), we get
ddx[f(x)]=ddx[goh(x)]=dd[h(x)][goh(x)]×d[h(x)]dx=g[h(x)]h(x)\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ goh\left( x \right) \right]=\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}={{g}^{'}}\left[ h\left( x \right) \right]{{h}^{'}}\left( x \right).
The above-mentioned rule is the chain rule.
The chain rule allows us to differentiate with respect to the function h(x)h\left( x \right) instead of xx and after that we need to take the differentiated form of h(x)h\left( x \right) with respect to xx.
For the function f(x)=12sin2xf\left( x \right)=\dfrac{1}{2}\sin 2x, we take differentiation of f(x)=12sin2xf\left( x \right)=\dfrac{1}{2}\sin 2x with respect to the function h(x)=2xh\left( x \right)=2x instead of xx and after that we need to take the differentiated form of h(x)=2xh\left( x \right)=2x with respect to xx.
The differentiation of g(x)=sinxg\left( x \right)=\sin x is g(x)=cosx{{g}^{'}}\left( x \right)=\cos x and differentiation of h(x)=2xh\left( x \right)=2x is h(x)=2{{h}^{'}}\left( x \right)=2. We apply the formula of ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}.
ddx[f(x)]=dd[2x][12sin2x]×d[2x]dx\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{d\left[ 2x \right]}\left[ \dfrac{1}{2}\sin 2x \right]\times \dfrac{d\left[ 2x \right]}{dx}
We place the values of the differentiations and get
ddx[f(x)]=(12cos2x)[2]=cos2x\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\left( \dfrac{1}{2}\cos 2x \right)\left[ 2 \right]=\cos 2x
Therefore, the differentiation of 12sin2x\dfrac{1}{2}\sin 2x is cos2x\cos 2x.

Note: We can also assume the secondary function as a new variable. For the given function 12sin2x\dfrac{1}{2}\sin 2x, we assume z=2xz=2x. Then we use the chain rule in the form of
ddx[f(x)]=ddx[g(z)]=ddz[g(z)]×dzdx=g(z)×z\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ g\left( z \right) \right]=\dfrac{d}{dz}\left[ g\left( z \right) \right]\times \dfrac{dz}{dx}={{g}^{'}}\left( z \right)\times {{z}^{'}}.
We replace the value h(x)=z=2xh\left( x \right)=z=2x.