Solveeit Logo

Question

Question: How do you find the derivative of \( \dfrac{1}{{1 - x}} \) ?...

How do you find the derivative of 11x\dfrac{1}{{1 - x}} ?

Explanation

Solution

Hint : In order to find the first derivative of the above expression with respect to x Use the reciprocal rule of derivation i.e. [1u(x)]=u(x)u(x)2{\left[ {\dfrac{1}{{u(x)}}} \right] ^\prime } = \dfrac{{u'(x)}}{{u{{(x)}^2}}} ,considering u(x)=1xu\left( x \right) = 1 - x to solve the above problem.
Formula:
[1u(x)]=u(x)u(x)2{\left[ {\dfrac{1}{{u(x)}}} \right] ^\prime } = \dfrac{{u'(x)}}{{u{{(x)}^2}}}
ddx[x]=1\dfrac{d}{{dx}}\left[ x \right] = 1
ddx[1]=0\dfrac{d}{{dx}}\left[ 1 \right] = 0

Complete step-by-step answer :
Given a function 11x\dfrac{1}{{1 - x}} let it be f(x)f(x)
f(x)=11xf(x) = \dfrac{1}{{1 - x}}
We have to find the first derivative of the above equation

ddx[f(x)]=f(x) f(x)=ddx[11x]   \dfrac{d}{{dx}}\left[ {f(x)} \right] = f'(x) \\\ f'(x) = \dfrac{d}{{dx}}\left[ {\dfrac{1}{{1 - x}}} \right] \;

Differentiation is linear So we can differentiate summands easily and pull out the constant factors
f(x)=ddx[11x]f'(x) = \dfrac{d}{{dx}}\left[ {\dfrac{1}{{1 - x}}} \right]
Let’s assume u(x)=1xu\left( x \right) = 1 - x and applying the reciprocal rule [1u(x)]=u(x)u(x)2{\left[ {\dfrac{1}{{u(x)}}} \right] ^\prime } = \dfrac{{u'(x)}}{{u{{(x)}^2}}}
=ddx[1]ddx[x](1x)2= - \dfrac{{\dfrac{d}{{dx}}\left[ 1 \right] - \dfrac{d}{{dx}}\left[ x \right] }}{{{{(1 - x)}^2}}}
The derivative of differentiation variable is 1
And derivative of the constant is 0
=01(1x)2 =1(1x)2   = - \dfrac{{0 - 1}}{{{{(1 - x)}^2}}} \\\ = \dfrac{1}{{{{(1 - x)}^2}}} \;
Therefore, the derivative of 11x\dfrac{1}{{1 - x}} is equal to 1(1x)2\dfrac{1}{{{{(1 - x)}^2}}} or (1x)2{(1 - x)^{ - 2}} .
So, the correct answer is “ 1(1x)2\dfrac{1}{{{{(1 - x)}^2}}} or (1x)2{(1 - x)^{ - 2}} ”.

Note : In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value with respect to a change in its argument. Derivatives are a fundamental tool of calculus.