Question
Question: How do you find the derivative of \(cos\left( {\sqrt x } \right)\)?...
How do you find the derivative of cos(x)?
Solution
In this question, we want to find the derivative of the cosine square root of x. First, consider it as a function y=cos(x). Based on the definition of differentiation, we will solve this question. The formula is dxdy=Δx→0limΔxf(x+Δx)−f(x) . Then apply some trigonometry formulas and simplify the question.
Complete step by step solution:
The function given in this question is,
⇒y=cos(x)
To solve the above function, we will apply the formula of differentiation.
⇒dxdy=Δx→0limΔxf(x+Δx)−f(x) ...(1)
Substitute the value of the function in equation (1).
⇒dxdy=Δx→0limΔxcos(x+Δx)−cos(x)
Now, we already know the trigonometry formula cosA−cosB=−2sin(2A+B)sin(2A−B).
Here, the value of ‘A’ is x+Δx and the value of ‘B’ is x.
Apply this formula and substitute the values of A and B.
⇒dxdy=Δx→0limΔx−2sin(2x+Δx+x)sin(2x+Δx−x)...(2)
Now, we can write,
⇒(x+Δx+x)(x+Δx−x)=(x+Δx)2−(x)2
We can cancel out the square root and square on the right-hand side.
Therefore,
⇒(x+Δx+x)(x+Δx−x)=x+Δx−x
Apply the subtraction on the right-hand side. The subtraction of x and x is 0.
Therefore,
⇒(x+Δx+x)(x+Δx−x)=Δx
Let us put this value in equation (2).
⇒dxdy=Δx→0lim(x+Δx+x)(x+Δx−x)−2sin(2x+Δx+x)sin(2x+Δx−x)
Let us split the denominator,
⇒dxdy=Δx→0lim(x+Δx+x)−2sin(2x+Δx+x)×(x+Δx−x)sin(2x+Δx−x)
Divide the numerator and the denominator by 2.
So,
⇒dxdy=−Δx→0lim(x+Δx+x)sin(2x+Δx+x)×(2x+Δx−x)sin(2x+Δx−x)
Apply the limit to both functions.
⇒dxdy=−Δx→0lim(x+Δx+x)sin(2x+Δx+x)×Δx→0lim(2x+Δx−x)sin(2x+Δx−x)
Now, let us consider (2x+Δx−x)=u.
Here, as Δx→0 then u→0.
So,
⇒dxdy=−Δx→0lim(x+Δx+x)sin(2x+Δx+x)×u→0lim(u)sin(u)
We know that u→0lim(u)sin(u)=1
So,
⇒dxdy=−Δx→0lim(x+Δx+x)sin(2x+Δx+x)×1
Now, apply the limit to the function.
So,
⇒dxdy=−(x+0+x)sin(2x+0+x)
That is equal to,
⇒dxdy=−(2x)sin(22x)
Therefore,
⇒dxdy=−2xsin(x)
Hence the answer is −2xsin(x).
Note:
The second method to solve the question is as below.
We want to find the derivative of cosine square root x.
⇒dxd(cos(x))
Apply the formula dxdcosy=−sinydxdy
Put x instead of y in the above formula.
So,
⇒dxd(cos(x))=−sin(x)dxd(x)
We can write x as x21.
So,
⇒dxd(cos(x))=−sin(x)dxdx21
Now, apply the formula dxdxn=nxn−1 .
⇒dxd(cos(x))=−sin(x)(21)x21−1
So,
⇒dxd(cos(x))=−21sin(x)x21−2
That is equal to,
⇒dxd(cos(x))=−21sin(x)x−21
We know that x−1=x1 .
So,
⇒dxd(cos(x))=−2x21sin(x)
We can write x21 as x.
⇒dxd(cos(x))=−2xsin(x)