Solveeit Logo

Question

Question: How do you find the derivative of \(cos\left( {\sqrt x } \right)\)?...

How do you find the derivative of cos(x)cos\left( {\sqrt x } \right)?

Explanation

Solution

In this question, we want to find the derivative of the cosine square root of x. First, consider it as a function y=cos(x)y = \cos \left( {\sqrt x } \right). Based on the definition of differentiation, we will solve this question. The formula is dydx=limΔx0f(x+Δx)f(x)Δx\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{f\left( {x + \Delta x} \right) - f\left( x \right)}}{{\Delta x}} . Then apply some trigonometry formulas and simplify the question.

Complete step by step solution:
The function given in this question is,
y=cos(x)\Rightarrow y = \cos \left( {\sqrt x } \right)
To solve the above function, we will apply the formula of differentiation.
dydx=limΔx0f(x+Δx)f(x)Δx\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{f\left( {x + \Delta x} \right) - f\left( x \right)}}{{\Delta x}} ...(1)
Substitute the value of the function in equation (1).
dydx=limΔx0cos(x+Δx)cos(x)Δx\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\cos \left( {\sqrt {x + \Delta x} } \right) - \cos \left( {\sqrt x } \right)}}{{\Delta x}}
Now, we already know the trigonometry formula cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right).
Here, the value of ‘A’ is x+Δx\sqrt {x + \Delta x} and the value of ‘B’ is x\sqrt x .
Apply this formula and substitute the values of A and B.
dydx=limΔx02sin(x+Δx+x2)sin(x+Δxx2)Δx\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{ - 2\sin \left( {\dfrac{{\sqrt {x + \Delta x} + \sqrt x }}{2}} \right)\sin \left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right)}}{{\Delta x}}...(2)
Now, we can write,
(x+Δx+x)(x+Δxx)=(x+Δx)2(x)2\Rightarrow \left( {\sqrt {x + \Delta x} + \sqrt x } \right)\left( {\sqrt {x + \Delta x} - \sqrt x } \right) = {\left( {\sqrt {x + \Delta x} } \right)^2} - {\left( {\sqrt x } \right)^2}
We can cancel out the square root and square on the right-hand side.
Therefore,
(x+Δx+x)(x+Δxx)=x+Δxx\Rightarrow \left( {\sqrt {x + \Delta x} + \sqrt x } \right)\left( {\sqrt {x + \Delta x} - \sqrt x } \right) = x + \Delta x - x
Apply the subtraction on the right-hand side. The subtraction of x and x is 0.
Therefore,
(x+Δx+x)(x+Δxx)=Δx\Rightarrow \left( {\sqrt {x + \Delta x} + \sqrt x } \right)\left( {\sqrt {x + \Delta x} - \sqrt x } \right) = \Delta x
Let us put this value in equation (2).
dydx=limΔx02sin(x+Δx+x2)sin(x+Δxx2)(x+Δx+x)(x+Δxx)\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{ - 2\sin \left( {\dfrac{{\sqrt {x + \Delta x} + \sqrt x }}{2}} \right)\sin \left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + \Delta x} + \sqrt x } \right)\left( {\sqrt {x + \Delta x} - \sqrt x } \right)}}
Let us split the denominator,
dydx=limΔx02sin(x+Δx+x2)(x+Δx+x)×sin(x+Δxx2)(x+Δxx)\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{ - 2\sin \left( {\dfrac{{\sqrt {x + \Delta x} + \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + \Delta x} + \sqrt x } \right)}} \times \dfrac{{\sin \left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + \Delta x} - \sqrt x } \right)}}
Divide the numerator and the denominator by 2.
So,
dydx=limΔx0sin(x+Δx+x2)(x+Δx+x)×sin(x+Δxx2)(x+Δxx2)\Rightarrow \dfrac{{dy}}{{dx}} = - \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\sin \left( {\dfrac{{\sqrt {x + \Delta x} + \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + \Delta x} + \sqrt x } \right)}} \times \dfrac{{\sin \left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right)}}{{\left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right)}}
Apply the limit to both functions.
dydx=limΔx0sin(x+Δx+x2)(x+Δx+x)×limΔx0sin(x+Δxx2)(x+Δxx2)\Rightarrow \dfrac{{dy}}{{dx}} = - \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\sin \left( {\dfrac{{\sqrt {x + \Delta x} + \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + \Delta x} + \sqrt x } \right)}} \times \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\sin \left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right)}}{{\left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right)}}
Now, let us consider (x+Δxx2)=u\left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right) = u.
Here, as Δx0\Delta x \to 0 then u0u \to 0.
So,
dydx=limΔx0sin(x+Δx+x2)(x+Δx+x)×limu0sin(u)(u)\Rightarrow \dfrac{{dy}}{{dx}} = - \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\sin \left( {\dfrac{{\sqrt {x + \Delta x} + \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + \Delta x} + \sqrt x } \right)}} \times \mathop {\lim }\limits_{u \to 0} \dfrac{{\sin \left( u \right)}}{{\left( u \right)}}
We know that limu0sin(u)(u)=1\mathop {\lim }\limits_{u \to 0} \dfrac{{\sin \left( u \right)}}{{\left( u \right)}} = 1
So,
dydx=limΔx0sin(x+Δx+x2)(x+Δx+x)×1\Rightarrow \dfrac{{dy}}{{dx}} = - \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\sin \left( {\dfrac{{\sqrt {x + \Delta x} + \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + \Delta x} + \sqrt x } \right)}} \times 1
Now, apply the limit to the function.
So,
dydx=sin(x+0+x2)(x+0+x)\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sin \left( {\dfrac{{\sqrt {x + 0} + \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + 0} + \sqrt x } \right)}}
That is equal to,
dydx=sin(2x2)(2x)\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sin \left( {\dfrac{{2\sqrt x }}{2}} \right)}}{{\left( {2\sqrt x } \right)}}
Therefore,
dydx=sin(x)2x\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sin \left( {\sqrt x } \right)}}{{2\sqrt x }}

Hence the answer is sin(x)2x - \dfrac{{\sin \left( {\sqrt x } \right)}}{{2\sqrt x }}.

Note:
The second method to solve the question is as below.
We want to find the derivative of cosine square root x.
ddx(cos(x))\Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right)
Apply the formula ddxcosy=sinydydx\dfrac{d}{{dx}}\cos y = - \sin y\dfrac{{dy}}{{dx}}
Put x\sqrt x instead of y in the above formula.
So,
ddx(cos(x))=sin(x)ddx(x)\Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right) = - \sin \left( {\sqrt x } \right)\dfrac{d}{{dx}}\left( {\sqrt x } \right)
We can write x\sqrt x as x12{x^{\dfrac{1}{2}}}.
So,
ddx(cos(x))=sin(x)ddx(x12)\Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right) = - \sin \left( {\sqrt x } \right)\dfrac{d}{{dx}}\left( {{x^{\dfrac{1}{2}}}} \right)
Now, apply the formula ddxxn=nxn1\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}} .
ddx(cos(x))=sin(x)(12)(x121)\Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right) = - \sin \left( {\sqrt x } \right)\left( {\dfrac{1}{2}} \right)\left( {{x^{\dfrac{1}{2} - 1}}} \right)
So,
ddx(cos(x))=12sin(x)(x122)\Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right) = - \dfrac{1}{2}\sin \left( {\sqrt x } \right)\left( {{x^{\dfrac{{1 - 2}}{2}}}} \right)
That is equal to,
ddx(cos(x))=12sin(x)(x12)\Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right) = - \dfrac{1}{2}\sin \left( {\sqrt x } \right)\left( {{x^{ - \dfrac{1}{2}}}} \right)
We know that x1=1x{x^{ - 1}} = \dfrac{1}{x} .
So,
ddx(cos(x))=sin(x)2x12\Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right) = - \dfrac{{\sin \left( {\sqrt x } \right)}}{{2{x^{\dfrac{1}{2}}}}}
We can write x12{x^{\dfrac{1}{2}}} as x\sqrt x .
ddx(cos(x))=sin(x)2x\Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right) = - \dfrac{{\sin \left( {\sqrt x } \right)}}{{2\sqrt x }}