Solveeit Logo

Question

Question: How do you find the derivative of \({{\cos }^{2}}\left( 2x \right)\)?...

How do you find the derivative of cos2(2x){{\cos }^{2}}\left( 2x \right)?

Explanation

Solution

The given function cos2(2x){{\cos }^{2}}\left( 2x \right) is a composite function. We have to use the chain rule for the derivation. We derive the main function with respect to the secondary one. Then we take the derivation of the secondary function with respect to xx. We take the multiplication of these two functions.

Complete step by step solution:
We differentiate the given function f(x)=cos2(2x)f\left( x \right)={{\cos }^{2}}\left( 2x \right) with respect to xx using the chain rule.
Here we have a composite function where the main function is g(x)=cos2xg\left( x \right)={{\cos }^{2}}x and the other function is h(x)=2xh\left( x \right)=2x.
We have goh(x)=g(2x)=cos2(2x)goh\left( x \right)=g\left( 2x \right)={{\cos }^{2}}\left( 2x \right). We take this as ours f(x)=cos2(2x)f\left( x \right)={{\cos }^{2}}\left( 2x \right).
We need to find the value of ddx[f(x)]=ddx[cos2(2x)]\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{\cos }^{2}}\left( 2x \right) \right]. We know f(x)=goh(x)f\left( x \right)=goh\left( x \right).
Differentiating f(x)=goh(x)f\left( x \right)=goh\left( x \right), we get
ddx[f(x)]=ddx[goh(x)]=dd[h(x)][goh(x)]×d[h(x)]dx=g[h(x)]h(x)\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ goh\left( x \right) \right]=\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}={{g}^{'}}\left[ h\left( x \right) \right]{{h}^{'}}\left( x \right).
The above-mentioned rule is the chain rule.
The chain rule allows us to differentiate with respect to the function h(x)h\left( x \right) instead of xx and after that we need to take the differentiated form of h(x)h\left( x \right) with respect to xx.
For the function f(x)=cos2(2x)f\left( x \right)={{\cos }^{2}}\left( 2x \right), we take differentiation of f(x)=cos2(2x)f\left( x \right)={{\cos }^{2}}\left( 2x \right) with respect to the function h(x)=2xh\left( x \right)=2x instead of xx and after that we need to take the differentiated form of h(x)=2xh\left( x \right)=2x with respect to xx.
We know the multiple angle formula of sin2x=2sinxcosx\sin 2x=2\sin x\cos x.
The differentiation of g(x)=cos2xg\left( x \right)={{\cos }^{2}}x is g(x)=2cosxd(cosx)dx=2sinxcosx=sin2x{{g}^{'}}\left( x \right)=2\cos x\dfrac{d\left( \cos x \right)}{dx}=-2\sin x\cos x=-\sin 2x and differentiation of h(x)=2xh\left( x \right)=2x is h(x)=2{{h}^{'}}\left( x \right)=2. We apply the formula of ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}.
ddx[f(x)]=dd[2x][cos2(2x)]×d[2x]dx\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{d\left[ 2x \right]}\left[ {{\cos }^{2}}\left( 2x \right) \right]\times \dfrac{d\left[ 2x \right]}{dx}
We place the values of the differentiations and get
ddx[f(x)]=(sin4x)[2]=2sin4x\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\left( -\sin 4x \right)\left[ 2 \right]=-2\sin 4x
Therefore, the differentiation of cos2(2x){{\cos }^{2}}\left( 2x \right) is 2sin(4x)-2\sin \left( 4x \right).

Note: We can also assume the secondary function as a new variable. For the given function cos2(2x){{\cos }^{2}}\left( 2x \right), we assume z=2xz=2x. Then we use the chain rule in the form of
ddx[f(x)]=ddx[g(z)]=ddz[g(z)]×dzdx=g(z)×z\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ g\left( z \right) \right]=\dfrac{d}{dz}\left[ g\left( z \right) \right]\times \dfrac{dz}{dx}={{g}^{'}}\left( z \right)\times {{z}^{'}}.
We replace the value h(x)=z=2xh\left( x \right)=z=2x.