Solveeit Logo

Question

Question: How do you find the derivative of \({\cos ^2}(2x)\)?...

How do you find the derivative of cos2(2x){\cos ^2}(2x)?

Explanation

Solution

Solve the question using the first principle of derivatives. Given a function y=f(x)y = f(x), it’s the first derivative, the rate of change of y with respect to the change in x, is defined by dydx=limh0[f(x+h)f(x)(x+h)(x)]\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{f(x + h) - f(x)}}{{(x + h) - (x)}}} \right].

Complete step by step answer:
Finding the derivative of a function by calculating the limit is known as differentiation from first principles. Use the identity sin(A+B)sin(AB)=sin2Asin2B=cos2Bcos2A\sin (A + B)\sin (A - B) = {\sin ^2}A - {\sin ^2}B = {\cos ^2}B - {\cos ^2}A
We are asked to find the derivative of y=cos2(2x)y = {\cos ^2}(2x)………..(1)
Increase yy to y+δyy + \delta y and correspondingly xx increase to x+δxx + \delta x in the above equation.
y+δy=cos2(x+δx)\Rightarrow y + \delta y = {\cos ^2}\left( {x + \delta x} \right) ………….. (2)
Subtract equation 1 from equation 2, we get
y+δyy=cos2(x+δx)cos2x\Rightarrow y + \delta y - y = {\cos ^2}(x + \delta x) - {\cos ^2}x
δy=cos2(x+δx)cos2x\Rightarrow \delta y = {\cos ^2}(x + \delta x) - {\cos ^2}x

Now, divide both sides of the equation with δx\delta x
δyδx=cos2(x+δx)cos2xδx\Rightarrow \dfrac{{\delta y}}{{\delta x}} = \dfrac{{{{\cos }^2}(x + \delta x) - {{\cos }^2}x}}{{\delta x}}
Using sin(A+B)sin(AB)=sin2Asin2B=cos2Bcos2A\sin (A + B)\sin (A - B) = {\sin ^2}A - {\sin ^2}B = {\cos ^2}B - {\cos ^2}A
We reach to the following step,
δyδx=sin(2x+δx)sinδxδx\Rightarrow \dfrac{{\delta y}}{{\delta x}} = - \dfrac{{\sin (2x + \delta x)\sin \delta x}}{{\delta x}}
Take limit on both side with respect to x where x approaches to 0
limx0δxδy=limx0sin(2x+δx)sinδxδx\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\delta x}}{{\delta y}} = \mathop {\lim }\limits_{x \to 0} - \dfrac{{\sin (2x + \delta x)\sin \delta x}}{{\delta x}}
dydx=limx0sin(2x+δx)sinδxδx\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{x \to 0} - \dfrac{{\sin (2x + \delta x)\sin \delta x}}{{\delta x}}
dydx=sin(2x+0)×1\Rightarrow \dfrac{{dy}}{{dx}} = - \sin (2x + 0) \times 1
Because limx0sinδxδx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \delta x}}{{\delta x}} = 1

Therefore, the answer comes out to be dydx=sin2x=2sinxcosx\dfrac{{dy}}{{dx}} = - \sin 2x = - 2\sin x\cos x.

Note: Differentiability of a function: A function f(x)f(x) is differentiable at x=ax = a in its domain, it it’s derivative is continuous at aa. That implies f(a)f'(a) must exist , or equivalently : limxa+f(x)=limxaf(x)=limxaf(x)=f(a)\mathop {\lim }\limits_{x \to {a^ + }} f'(x) = \mathop {\lim }\limits_{x \to {a^ - }} f'(x) = \mathop {\lim }\limits_{x \to a} f'(x) = f'(a). A continuous function is always differentiable but a differentiable function may not be continuous. Therefore, it is advised to students that continuity checks should be performed before finding the derivative of a function.