Solveeit Logo

Question

Question: How do you find the derivative of \({\cos ^{ - 1}}\left( {\dfrac{x}{2}} \right)\)?...

How do you find the derivative of cos1(x2){\cos ^{ - 1}}\left( {\dfrac{x}{2}} \right)?

Explanation

Solution

In this question we have to find the derivative of the given inverse function, first assume the given function as a variable, and then apply the cos to both sides, and then derive both sides of the equation we will get an expression in terms of sin(cos1x2)\sin \left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right), now using the trigonometric identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1, let’s assume here as, x=cos1x2x = {\cos ^{ - 1}}\dfrac{x}{2}, then simplify the expression and to get the value of sin(cos1x2)\sin \left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right)and then by substituting the value in the first expression and then further simplification we will get the required result.

Complete step by step solution:
Given function is cos1(x2){\cos ^{ - 1}}\left( {\dfrac{x}{2}} \right),
Now let’s assume the given function as yy,
y=cos1x2\Rightarrow y = {\cos ^{ - 1}}\dfrac{x}{2},
Now apply cos on both sides we get,
cosy=cos(cos1x2)\Rightarrow \cos y = \cos \left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right),
Now simplifying we get,
cosy=x2\Rightarrow \cos y = \dfrac{x}{2},
Now differentiate in both sides of the equation we get,
ddxcosy=ddxx2\Rightarrow \dfrac{d}{{dx}}\cos y = \dfrac{d}{{dx}}\dfrac{x}{2},
Now simplifying we get,
sinydydx=12\Rightarrow - \sin y\dfrac{{dy}}{{dx}} = \dfrac{1}{2} ,
Now taking sin y to the right hand side we get,
dydx=121siny\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{1}{2}\dfrac{1}{{\sin y}},
Now we know that y=cos1x2y = {\cos ^{ - 1}}\dfrac{x}{2}, then the equation becomes,
ddxcos1x2=12sin(cos1(x2))\Rightarrow \dfrac{d}{{dx}}{\cos ^{ - 1}}\dfrac{x}{2} = \dfrac{{ - 1}}{{2\sin \left( {{{\cos }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)}},-----(1),
Now from the trigonometric identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1, let’s assume here as, x=cos1x2x = {\cos ^{ - 1}}\dfrac{x}{2}, then the identity becomes,
sin2(cos1x2)+cos2(cos1(x2))=1\Rightarrow {\sin ^2}\left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right) + {\cos ^2}\left( {{{\cos }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) = 1,
Now rewrite the expression as,
sin2(cos1x2)+(cos(cos1(x2)))2=1\Rightarrow {\sin ^2}\left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right) + {\left( {\cos \left( {{{\cos }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)} \right)^2} = 1,
Now we know that cos(cos1x)=x\cos \left( {{{\cos }^{ - 1}}x} \right) = x the identity becomes,
sin2(cos1x2)+x24=1\Rightarrow {\sin ^2}\left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right) + \dfrac{{{x^2}}}{4} = 1,
Now simplifying we get,
sin2(cos1x2)=1x24\Rightarrow {\sin ^2}\left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right) = 1 - \dfrac{{{x^2}}}{4},
Now taking out the square root we get,
sin(cos1x2)=1x24\sin \left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right) = \sqrt {1 - \dfrac{{{x^2}}}{4}} ,
Now simplifying we get,
sin(cos1x2)=4x24\sin \left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right) = \sqrt {\dfrac{{4 - {x^2}}}{4}} ,
Now again simplifying we get,
sin(cos1x2)=124x2\Rightarrow \sin \left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right) = \dfrac{1}{2}\sqrt {4 - {x^2}},
Now substituting the value in (1) we get,
ddxcos1(x2)=12124x2\dfrac{d}{{dx}}{\cos ^{ - 1}}\left( {\dfrac{x}{2}} \right) = \dfrac{{ - 1}}{{2\dfrac{1}{2}\sqrt {4 - {x^2}} }},
Now simplifying we get,
ddxcos1(x2)=14x2\dfrac{d}{{dx}}{\cos ^{ - 1}}\left( {\dfrac{x}{2}} \right) = \dfrac{{ - 1}}{{\sqrt {4 - {x^2}} }}.
So, the derivative of the given function is 14x2\dfrac{{ - 1}}{{\sqrt {4 - {x^2}} }}.

Final Answer:
\therefore The derivative of the given function cos1(x2){\cos ^{ - 1}}\left( {\dfrac{x}{2}} \right) will be equal to 14x2\dfrac{{ - 1}}{{\sqrt {4 - {x^2}} }}.

Note:
Another method of solving the question is by directly using the derivative of inverse trigonometric functions the formula which is given by ddxcos1x=11x2\dfrac{d}{{dx}}{\cos ^{ - 1}}x = \dfrac{{ - 1}}{{\sqrt {1 - {x^2}} }},
Now given function is cos1(x2){\cos ^{ - 1}}\left( {\dfrac{x}{2}} \right),
Now here x=x2x = \dfrac{x}{2}, by substitute the value in the formula we get,
ddxcos1x2=11x24ddxx2\Rightarrow \dfrac{d}{{dx}}{\cos ^{ - 1}}\dfrac{x}{2} = \dfrac{{ - 1}}{{\sqrt {1 - \dfrac{{{x^2}}}{4}} }}\dfrac{d}{{dx}}\dfrac{x}{2},
Now simplifying we get,
ddxcos1x2=14x2412\Rightarrow \dfrac{d}{{dx}}{\cos ^{ - 1}}\dfrac{x}{2} = \dfrac{{ - 1}}{{\sqrt {\dfrac{{4 - {x^2}}}{4}} }}\dfrac{1}{2},
Now simplifying we get,
ddxcos1x2=24x212\Rightarrow \dfrac{d}{{dx}}{\cos ^{ - 1}}\dfrac{x}{2} = \dfrac{{ - 2}}{{\sqrt {4 - {x^2}} }}\dfrac{1}{2},
Now further simplifying we get,
ddxcos1x2=14x2\Rightarrow \dfrac{d}{{dx}}{\cos ^{ - 1}}\dfrac{x}{2} = \dfrac{{ - 1}}{{\sqrt {4 - {x^2}} }},
So, we got the same derivative value i.e., 14x2\dfrac{{ - 1}}{{\sqrt {4 - {x^2}} }}.