Solveeit Logo

Question

Question: How do you find the derivative for \(f\left( x \right)=\dfrac{\cot x}{\sin x}\)?...

How do you find the derivative for f(x)=cotxsinxf\left( x \right)=\dfrac{\cot x}{\sin x}?

Explanation

Solution

In this problem they have asked to calculate the derivative of the given function. We can observe that the given function is a fraction with the trigonometric ratios as both numerator and denominator. In differentiation we have the uv\dfrac{u}{v} formula which is ddx(uv)=vdudxudvdxv2\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}. For applying this formula, we have to calculate the values of dudx\dfrac{du}{dx}, dvdx\dfrac{dv}{dx}. So, we will compare the given equation with uv\dfrac{u}{v} and calculate the values of dudx\dfrac{du}{dx}, dvdx\dfrac{dv}{dx}. After calculating the values of dudx\dfrac{du}{dx}, dvdx\dfrac{dv}{dx} we will substitute them in the uv\dfrac{u}{v} formula and simplify the obtained equation to get the required result.

Complete step by step answer:
Given function, f(x)=cotxsinxf\left( x \right)=\dfrac{\cot x}{\sin x}.
Comparing the above function with uv\dfrac{u}{v} form, then we will get
u=cotxu=\cot x, v=sinxv=\sin x.
Differentiating the both the above equation with respect to xx, then we will get
dudx=ddx(cotx)\dfrac{du}{dx}=\dfrac{d}{dx}\left( \cot x \right), dvdx=ddx(sinx)\dfrac{dv}{dx}=\dfrac{d}{dx}\left( \sin x \right).
We have the differentiation formulas ddx(cotx)=csc2x\dfrac{d}{dx}\left( \cot x \right)=-{{\csc }^{2}}x, ddx(sinx)=cosx\dfrac{d}{dx}\left( \sin x \right)=\cos x. Substituting these values in the above equation, then we will get
dudx=csc2x\Rightarrow \dfrac{du}{dx}=-{{\csc }^{2}}x, dvdx=cosx\Rightarrow \dfrac{dv}{dx}=\cos x.
Now differentiating the given function with respect to xx, then we will get
f(x)=ddx(cotxsinx){{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left( \dfrac{\cot x}{\sin x} \right)
Applying the differentiation formula ddx(uv)=vdudxudvdxv2\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}} in the above equation, then we will get
f(x)=sinx(dudx)cotx(dvdx)sin2x\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{\sin x\left( \dfrac{du}{dx} \right)-\cot x\left( \dfrac{dv}{dx} \right)}{{{\sin }^{2}}x}
Substituting the values of dudx\dfrac{du}{dx}, dvdx\dfrac{dv}{dx} in the above equation, then we will get
f(x)=sinx(csc2x)cotxcosxsin2x\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{\sin x\left( -{{\csc }^{2}}x \right)-\cot x\cos x}{{{\sin }^{2}}x}
Simplifying the above equation by converting the all-trigonometric ratios into sinx\sin x, cosx\cos x, then we will get
f(x)=sinx×1sin2xcosxsinx×cosxsin2x f(x)=1sinxcos2xsinxsin2x f(x)=1+cos2xsin2x×sinx f(x)=1+cos2xsin3x \begin{aligned} & \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{-\sin x\times \dfrac{1}{{{\sin }^{2}}x}-\dfrac{\cos x}{\sin x}\times \cos x}{{{\sin }^{2}}x} \\\ & \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{\dfrac{-1}{\sin x}-\dfrac{{{\cos }^{2}}x}{\sin x}}{{{\sin }^{2}}x} \\\ & \Rightarrow {{f}^{'}}\left( x \right)=-\dfrac{1+{{\cos }^{2}}x}{{{\sin }^{2}}x\times \sin x} \\\ & \Rightarrow {{f}^{'}}\left( x \right)=-\dfrac{1+{{\cos }^{2}}x}{{{\sin }^{3}}x} \\\ \end{aligned}

Hence the derivative of the given function f(x)=cotxsinxf\left( x \right)=\dfrac{\cot x}{\sin x} is 1+cos2xsin3x-\dfrac{1+{{\cos }^{2}}x}{{{\sin }^{3}}x}.

Note: In this problem we have converted all the trigonometric ratios into sinx\sin x, cosx\cos x after calculating the derivative of the given function. We can also simplify the given equation by substituting cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x} in the given function and simplify the function. Now we will get the whole given equation in terms of sinx\sin x, cosx\cos x. Now we can simplify derivative.