Solveeit Logo

Question

Question: How do you find the definite integral of \[\tan xdx\] from \[\left[ \dfrac{\pi }{4},\pi \right]\]?...

How do you find the definite integral of tanxdx\tan xdx from [π4,π]\left[ \dfrac{\pi }{4},\pi \right]?

Explanation

Solution

This type of question is based on the concept of definite integral. First, we have to simplify the given function as tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}. Then, consider u=cosx and find du. Substitute these to find the definite integral. Do necessary calculations. And then apply the limits to find the final solution.

Complete step by step answer:
According to the question, we are asked to find the definite integral of tanxdx\tan xdx from [π4,π]\left[ \dfrac{\pi }{4},\pi \right].
We have been given the equation is tanxdx\tan xdx --------(1)
We know that tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}.
Therefore, tanxdx=sinxcosxdx\tan xdx=\dfrac{\sin x}{\cos x}dx
Now, let us find the definite integral.
π4πtanxdx=π4πsinxcosxdx\int_{\dfrac{\pi }{4}}^{\pi }{\tan xdx=}\int_{\dfrac{\pi }{4}}^{\pi }{\dfrac{\sin x}{\cos x}dx} -------(2)
Let us now substitute u=cosx
But here x[π4,π]x\in \left[ \dfrac{\pi }{4},\pi \right].
When x=π4x=\dfrac{\pi }{4}, u=sinπ4=12u=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}
Similarly, when x=πx=\pi ,u=sinπ=0u=\sin \pi =0
Therefore, the limits with respect to x is [12,0]\left[ \dfrac{1}{\sqrt{2}},0 \right]
Let us now differentiate ‘u’ with respect to ‘x’.
dudx=ddx(cosx)\dfrac{du}{dx}=\dfrac{d}{dx}\left( \cos x \right)
We know that ddx(cosx)=sinx\dfrac{d}{dx}\left( \cos x \right)=-\sin x.
dudx=sinx\Rightarrow \dfrac{du}{dx}=-\sin x
du=sinxdx\therefore du=-\sin xdx --------(3)
Substituting u and (3) in equation (2), we get
π4πtanxdx=1201udu\int_{\dfrac{\pi }{4}}^{\pi }{\tan xdx=}\int_{\dfrac{1}{\sqrt{2}}}^{0}{\dfrac{-1}{u}du}
ππ4tanxdx=1201udu\Rightarrow \int_{\pi }^{\dfrac{\pi }{4}}{\tan xdx=}-\int_{\dfrac{1}{\sqrt{2}}}^{0}{\dfrac{1}{u}du}
We know that 1xdx=logx\int{\dfrac{1}{x}dx=\log x}, we get
π4πtanxdx=[logu]120\Rightarrow \int_{\dfrac{\pi }{4}}^{\pi }{\tan xdx=}-\left[ \log u \right]_{\dfrac{1}{\sqrt{2}}}^{0}
π4πtanxdx=[log0log(12)]\Rightarrow \int_{\dfrac{\pi }{4}}^{\pi }{\tan xdx=}-\left[ \log 0-\log \left( \dfrac{1}{\sqrt{2}} \right) \right]
We know that log0=0.
π4πtanxdx=[log(12)]\Rightarrow \int_{\dfrac{\pi }{4}}^{\pi }{\tan xdx=}-\left[ -\log \left( \dfrac{1}{\sqrt{2}} \right) \right]
π4πtanxdx=log(12)\therefore \int_{\dfrac{\pi }{4}}^{\pi }{\tan xdx=}\log \left( \dfrac{1}{\sqrt{2}} \right)

Hence, find the definite integral of tanxdx\tan xdx from [π4,π]\left[ \dfrac{\pi }{4},\pi \right] is log(12)\log \left( \dfrac{1}{\sqrt{2}} \right)

Note:
We can further simplify the answer using logarithmic properties such as
log(1x)=logx\log \left( \dfrac{1}{x} \right)=-\log x and log(xn)=nlogx\log \left( {{x}^{n}} \right)=n\log x.
Therefore,
log(12)=log(2)\log \left( \dfrac{1}{\sqrt{2}} \right)=-\log \left( \sqrt{2} \right)
log(12)=log(212)\Rightarrow \log \left( \dfrac{1}{\sqrt{2}} \right)=-\log \left( {{2}^{\dfrac{1}{2}}} \right)
log(12)=12log(2)\therefore \log \left( \dfrac{1}{\sqrt{2}} \right)=-\dfrac{1}{2}\log \left( 2 \right)
Hence the final solution of the definite integral of tanxdx\tan xdx from [π4,π]\left[ \dfrac{\pi }{4},\pi \right] is 12log(2)-\dfrac{1}{2}\log \left( 2 \right).
For this type of questions, we should use trigonometric identities and simplify the given function of finding the definite integral. We should avoid calculation mistakes based on sign conventions. We should also know the differentiation of trigonometric functions for easy calculations. We should not forget to convert the limits of the given function. If we forget to change the value of the limits, the answer will be incorrect. We can also solve this question by not substituting u=cosx. But instead, we can directly integrate tanxdx.