Solveeit Logo

Question

Question: How do you find the definite integral of \(\int{\dfrac{{{x}^{2}}-2}{x+1}dx}\) from \(\left[ 0,2 \rig...

How do you find the definite integral of x22x+1dx\int{\dfrac{{{x}^{2}}-2}{x+1}dx} from [0,2]\left[ 0,2 \right]?

Explanation

Solution

We first discuss the integration of functions in binary operations. We take integration of the functions separately with respect to xx an apply the same operation on them. We take the operation’s answer as the final solution. We apply the a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) for our integration of the numerator x21=(x+1)(x1){{x}^{2}}-1=\left( x+1 \right)\left( x-1 \right). We use the formulas xndx=xn+1n+1+c\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+c, 1xdx=logx+c\int{\dfrac{1}{x}dx}=\log \left| x \right|+c.

Complete step by step solution:
We need to find the definite integral of x22x+1dx\int{\dfrac{{{x}^{2}}-2}{x+1}dx} from [0,2]\left[ 0,2 \right]. Let I=02x22x+1dxI=\int\limits_{0}^{2}{\dfrac{{{x}^{2}}-2}{x+1}dx}.
Now we express the numerator of the faction x22{{x}^{2}}-2 as x22=x211{{x}^{2}}-2={{x}^{2}}-1-1.
Now we break the total function into two sub functions.
We get x22x+1=x211x+1=x21x+11x+1\dfrac{{{x}^{2}}-2}{x+1}=\dfrac{{{x}^{2}}-1-1}{x+1}=\dfrac{{{x}^{2}}-1}{x+1}-\dfrac{1}{x+1}.
We apply the identity a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) to get x21=(x+1)(x1){{x}^{2}}-1=\left( x+1 \right)\left( x-1 \right).
From the fraction we get x21x+1=(x+1)(x1)(x+1)=(x1)\dfrac{{{x}^{2}}-1}{x+1}=\dfrac{\left( x+1 \right)\left( x-1 \right)}{\left( x+1 \right)}=\left( x-1 \right).
So, I=02(x1)dx021x+1dxI=\int\limits_{0}^{2}{\left( x-1 \right)dx}-\int\limits_{0}^{2}{\dfrac{1}{x+1}dx}.
We know xndx=xn+1n+1+c\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+c and 1xdx=logx+c\int{\dfrac{1}{x}dx}=\log \left| x \right|+c.
We can also form the integration 021x+1dx\int\limits_{0}^{2}{\dfrac{1}{x+1}dx} as 021x+1d(x+1)\int\limits_{0}^{2}{\dfrac{1}{x+1}d\left( x+1 \right)}.
This is possible because of d(x+1)=dxd\left( x+1 \right)=dx.
Therefore,
I=02(x1)dx021x+1dx =[x22x]02[logx+1]02 \begin{aligned} & I=\int\limits_{0}^{2}{\left( x-1 \right)dx}-\int\limits_{0}^{2}{\dfrac{1}{x+1}dx} \\\ & =\left[ \dfrac{{{x}^{2}}}{2}-x \right]_{0}^{2}-\left[ \log \left| x+1 \right| \right]_{0}^{2} \\\ \end{aligned}
We put the values in the equations to get
I=[x22x]02[logx+1]02=[22][log3log1]=log3I=\left[ \dfrac{{{x}^{2}}}{2}-x \right]_{0}^{2}-\left[ \log \left| x+1 \right| \right]_{0}^{2}=\left[ 2-2 \right]-\left[ \log 3-\log 1 \right]=-\log 3
Therefore, the definite integral of x22x+1dx\int{\dfrac{{{x}^{2}}-2}{x+1}dx} from [0,2]\left[ 0,2 \right] is equal to log3-\log 3.

Note: We can also solve the second integration using the base change for ratio z=x+1z=x+1. In that case the sum gets complicated but the final solution would be same. It is better to watch out for the odd power value in the ratios and take that as the change in the variable.