Solveeit Logo

Question

Question: How do you find the definite integral \(\int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {{x^2}\co...

How do you find the definite integral π25π2x2cos(15x)dx\int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {{x^2}\cos \left( {\dfrac{1}{5}x} \right)} dx?

Explanation

Solution

This problem deals with finding the integration of the given definite integral. This integration process is done by the method of integration by parts. Integration by parts is done when there is a product of two functions, inside the integral. The integration by parts formula is given below:
f1(x)f2(x)dx=f1(x)f2(x)dx[f11(x)f2(x)dx]dx\Rightarrow \int {{f_1}(x){f_2}(x)} dx = {f_1}(x)\int {{f_2}(x)} dx - \left[ {\int {f_1^1(x)} \int {{f_2}(x)} dx} \right]dx

Complete step-by-step answer:
There are 3 different methods of solving integrations which are:

Integration by substitution.
Integration by partial fractions.
Integration by parts.
Here we are using the method of integration by parts.
Consider the given integral as shown below:
π25π2x2cos(15x)dx\Rightarrow \int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {{x^2}\cos \left( {\dfrac{1}{5}x} \right)} dx
Here let the first function f1(x)=x2{f_1}(x) = {x^2} and the second function f2(x)=cos(15x){f_2}(x) = \cos \left( {\dfrac{1}{5}x} \right)
Now applying the method of integration by parts to the integral π25π2x2cos(15x)dx\int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {{x^2}\cos \left( {\dfrac{1}{5}x} \right)} dx, as shown:
π25π2x2cos(15x)dx=5x2π25π2cos(15x)dx10[π25π2(ddx(x2)cos(15x)dx)dx]\Rightarrow \int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {{x^2}\cos \left( {\dfrac{1}{5}x} \right)} dx = 5{x^2}\int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {\cos \left( {\dfrac{1}{5}x} \right)} dx - 10\left[ {\int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {\left( {\dfrac{d}{{dx}}\left( {{x^2}} \right)\int {\cos \left( {\dfrac{1}{5}x} \right)} dx} \right)dx} } \right]
We know that the integration of cosxdx=sinx\int {\cos xdx = \sin x} , and the derivative of x2{x^2} is 2x2x, as given below:
π25π2x2cos(15x)dx=[5x2sin(15x)]π25π2[π25π2(10xsin(15x))dx]\Rightarrow \int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {{x^2}\cos \left( {\dfrac{1}{5}x} \right)} dx = \left[ {{5x^2}\sin \left( {\dfrac{1}{5}x} \right)} \right]_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} - \left[ {\int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {\left( {10x\sin \left( {\dfrac{1}{5}x} \right)} \right)dx} } \right]
π25π2x2cos(15x)dx=[5x2sin(15x)]π25π210π25π2xsin(15x)dx\Rightarrow \int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {{x^2}\cos \left( {\dfrac{1}{5}x} \right)} dx = \left[ {{5x^2}\sin \left( {\dfrac{1}{5}x} \right)} \right]_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} - 10\int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {x\sin \left( {\dfrac{1}{5}x} \right)dx}
Now applying the integration by parts for the integral π25π2xsin(15x)dx\int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {x\sin \left( {\dfrac{1}{5}x} \right)dx} , as shown :
π25π2x2cos(15x)dx=[(5π2)2sin(15(5π2))(π2)2sin(15(π2))]2[xπ25π2sin(15x)dx[π25π2ddx(x)sin(15x)dx]dx]\Rightarrow \int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {{x^2}\cos \left( {\dfrac{1}{5}x} \right)} dx = \left[ {{{\left( {\dfrac{{5\pi }}{2}} \right)}^2}\sin \left( {\dfrac{1}{5}\left( {\dfrac{{5\pi }}{2}} \right)} \right) - {{\left( {\dfrac{\pi }{2}} \right)}^2}\sin \left( {\dfrac{1}{5}\left( {\dfrac{\pi }{2}} \right)} \right)} \right] - 2\left[ {x\int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {\sin \left( {\dfrac{1}{5}x} \right)dx - \left[ {\int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {\dfrac{d}{{dx}}\left( x \right)\int {\sin \left( {\dfrac{1}{5}x} \right)} dx} } \right]} dx} \right]
Substituting the upper and the lower limits of the integral as shown above.
π25π2x2cos(15x)dx=[(5π2)2sin(15(5π2))(π2)2sin(15(π2))]2[[xcos(15x)]π25π2+π25π21.cos(15x)dx]\Rightarrow \int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {{x^2}\cos \left( {\dfrac{1}{5}x} \right)} dx = \left[ {{{\left( {\dfrac{{5\pi }}{2}} \right)}^2}\sin \left( {\dfrac{1}{5}\left( {\dfrac{{5\pi }}{2}} \right)} \right) - {{\left( {\dfrac{\pi }{2}} \right)}^2}\sin \left( {\dfrac{1}{5}\left( {\dfrac{\pi }{2}} \right)} \right)} \right] - 2\left[ {\left[ { - x\cos \left( {\dfrac{1}{5}x} \right)} \right]_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} + \int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {1.\cos \left( {\dfrac{1}{5}x} \right)} dx} \right]
We know that the integration of sinxdx=cosx\int {\sin xdx = - \cos x} , hence substituting, as shown above.
π25π2x2cos(15x)dx=[(5π2)2sin(15(5π2))(π2)2sin(15(π2))]2[[(5π2)cos(15(5π2))(π2)cos(15(π2))]+[sin(15x)]π25π2]\Rightarrow \int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {{x^2}\cos \left( {\dfrac{1}{5}x} \right)} dx = \left[ {{{\left( {\dfrac{{5\pi }}{2}} \right)}^2}\sin \left( {\dfrac{1}{5}\left( {\dfrac{{5\pi }}{2}} \right)} \right) - {{\left( {\dfrac{\pi }{2}} \right)}^2}\sin \left( {\dfrac{1}{5}\left( {\dfrac{\pi }{2}} \right)} \right)} \right] - 2\left[ { - \left[ {\left( {\dfrac{{5\pi }}{2}} \right)\cos \left( {\dfrac{1}{5}\left( {\dfrac{{5\pi }}{2}} \right)} \right) - \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{1}{5}\left( {\dfrac{\pi }{2}} \right)} \right)} \right] + \left[ {\sin \left( {\dfrac{1}{5}x} \right)} \right]_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}}} \right]
Now we know that the values of sin(π2)=1\sin \left( {\dfrac{\pi }{2}} \right) = 1 and cos(π2)=0\cos \left( {\dfrac{\pi }{2}} \right) = 0, substituting them as shown:
π25π2x2cos(15x)dx=[(5π2)2(π2)2sin(π10)]2[[π2cos(π10)]+[sin(π2)sin(π10)]]\Rightarrow \int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {{x^2}\cos \left( {\dfrac{1}{5}x} \right)} dx = \left[ {{{\left( {\dfrac{{5\pi }}{2}} \right)}^2} - {{\left( {\dfrac{\pi }{2}} \right)}^2}\sin \left( {\dfrac{\pi }{{10}}} \right)} \right] - 2\left[ {\left[ {\dfrac{\pi }{2}\cos \left( {\dfrac{\pi }{{10}}} \right)} \right] + \left[ {\sin \left( {\dfrac{\pi }{2}} \right) - \sin \left( {\dfrac{\pi }{{10}}} \right)} \right]} \right]
π25π2x2cos(15x)dx=[(5π2)2(π2)2sin(π10)]+2[π2cos(π10)1+sin(π10)]\Rightarrow \int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {{x^2}\cos \left( {\dfrac{1}{5}x} \right)} dx = \left[ {{{\left( {\dfrac{{5\pi }}{2}} \right)}^2} - {{\left( {\dfrac{\pi }{2}} \right)}^2}\sin \left( {\dfrac{\pi }{{10}}} \right)} \right] + 2\left[ { - \dfrac{\pi }{2}\cos \left( {\dfrac{\pi }{{10}}} \right) - 1 + \sin \left( {\dfrac{\pi }{{10}}} \right)} \right]
Now opening the brackets and simplifying the expressions as shown:
π25π2x2cos(15x)dx=(5π2)2(π2)2sin(π10)πcos(π10)2+2sin(π10)\Rightarrow \int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {{x^2}\cos \left( {\dfrac{1}{5}x} \right)} dx = {\left( {\dfrac{{5\pi }}{2}} \right)^2} - {\left( {\dfrac{\pi }{2}} \right)^2}\sin \left( {\dfrac{\pi }{{10}}} \right) - \pi \cos \left( {\dfrac{\pi }{{10}}} \right) - 2 + 2\sin \left( {\dfrac{\pi }{{10}}} \right)
π25π2x2cos(15x)dx=[2(π2)2]sin(π10)πcos(π10)+(5π2)22\Rightarrow \int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {{x^2}\cos \left( {\dfrac{1}{5}x} \right)} dx = \left[ {2 - {{\left( {\dfrac{\pi }{2}} \right)}^2}} \right]\sin \left( {\dfrac{\pi }{{10}}} \right) - \pi \cos \left( {\dfrac{\pi }{{10}}} \right) + {\left( {\dfrac{{5\pi }}{2}} \right)^2} - 2
Now substituting the values of sin(π10)=0.3090\sin \left( {\dfrac{\pi }{{10}}} \right) = 0.3090, cos(π10)=0.9510\cos \left( {\dfrac{\pi }{{10}}} \right) = 0.9510 and the π=3.1415\pi = 3.1415
π25π2x2cos(15x)dx=57.171\Rightarrow \int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {{x^2}\cos \left( {\dfrac{1}{5}x} \right)} dx = 57.171

Final answer: The value of the integral π25π2x2cos(15x)dx\int\limits_{\dfrac{\pi }{2}}^{\dfrac{{5\pi }}{2}} {{x^2}\cos \left( {\dfrac{1}{5}x} \right)} dx is 57.171.

Note:
Please note that there are two types of integrals, which are definite integrals and indefinite integrals. Definite integrals are those integrals for which there is a particular limit on the integrals. Whereas for the indefinite integrals there are no such limits on the integral.