Solveeit Logo

Question

Question: How do you find the cube root of \(81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac...

How do you find the cube root of 81(cos(π12)+isin(π12))81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)

Explanation

Solution

In this problem we need to calculate the cube root of the given value. We can observe that the given value is an imaginary number which is in the form of r(cosθ+isinθ)r\left( \cos \theta +i\sin \theta \right). We know that De moivre’s theorem states that [r(cosθ+isinθ)]n=rn(cosnθ+isinnθ){{\left[ r\left( \cos \theta +i\sin \theta \right) \right]}^{n}}={{r}^{n}}\left( \cos n\theta +i\sin n\theta \right). So first we will take the cube root of the given value as the (13)rd{{\left( \dfrac{1}{3} \right)}^{rd}} power of the given value and apply the De moivre’s theorem. Now we will simplify the equation to get the required result.

Complete step by step solution:
Given that, 81(cos(π12)+isin(π12))81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right).
Let z=81(cos(π12)+isin(π12))z=81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right).
We can write the cube root of the above value as
z3=81(cos(π12)+isin(π12))3\Rightarrow \sqrt[3]{z}=\sqrt[3]{81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)}
We are going to write the cube root as the (13)rd{{\left( \dfrac{1}{3} \right)}^{rd}} power of the above value in the above equation, then we will get
z3=[81(cos(π12)+isin(π12))]13\Rightarrow \sqrt[3]{z}={{\left[ 81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right) \right]}^{\dfrac{1}{3}}}
From the De moivre’s theorem have the formula [r(cosθ+isinθ)]n=rn(cosnθ+isinnθ){{\left[ r\left( \cos \theta +i\sin \theta \right) \right]}^{n}}={{r}^{n}}\left( \cos n\theta +i\sin n\theta \right) applying this formula in the above equation, then we will get the cube root value as
z3=8113(cos(13×π12)+isin(13×π12))\Rightarrow \sqrt[3]{z}={{81}^{\dfrac{1}{3}}}\left( \cos \left( \dfrac{1}{3}\times \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{1}{3}\times \dfrac{\pi }{12} \right) \right)
Simplifying the above equation by multiplying the denominators in the above equation, then we will get
z3=8113(cosπ36+isinπ36)\Rightarrow \sqrt[3]{z}={{81}^{\dfrac{1}{3}}}\left( \cos \dfrac{\pi }{36}+i\sin \dfrac{\pi }{36} \right)
Hence the cube root of the given value 81(cos(π12)+isin(π12))81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right) is 8113(cosπ36+isinπ36){{81}^{\dfrac{1}{3}}}\left( \cos \dfrac{\pi }{36}+i\sin \dfrac{\pi }{36} \right).

Note: We can also use the value of sinπ36=0.173648\sin \dfrac{\pi }{36}=0.173648, cosπ36=0.984808\cos \dfrac{\pi }{36}=0.984808 in the above equation and simplify the value. We can use this procedure for any power of the imaginary number to simplify the value.