Solveeit Logo

Question

Question: How do you find the critical points to graph \(y=\sin \left( \dfrac{x}{2} \right)\)?...

How do you find the critical points to graph y=sin(x2)y=\sin \left( \dfrac{x}{2} \right)?

Explanation

Solution

In this problem we need to calculate the critical point on the given curve. We know that the critical points are the points on the curve at which the curve has maximum, minimum and zero values. So, we will assume the range of variable xx based on the given function and calculate all the known values in the given interval. Now we will plot the graph of the given equation and observe the critical points.

Complete step by step solution:
Given that, y=sin(x2)y=\sin \left( \dfrac{x}{2} \right).
In the given equation we can observe the trigonometric function sin\sin . We know that the function sinx\sin x shows unique value in the range of [0,2π]\left[ 0,2\pi \right]. But in the above equation we have sin(x2)\sin \left( \dfrac{x}{2} \right) i.e., it shows the unique ranges in [0×2,2π×2]=[0,4π]\left[ 0\times 2,2\pi \times 2 \right]=\left[ 0,4\pi \right]. So, considering the range of variables xx as [0,4π]\left[ 0,4\pi \right]. Now the value of yy for different values of xx will be
If x=0sin(x2)=sin0=0x=0\Rightarrow \sin \left( \dfrac{x}{2} \right)=\sin 0=0
If x=π2sin(π22)=sin(π4)=12x=\dfrac{\pi }{2}\Rightarrow \sin \left( \dfrac{\dfrac{\pi }{2}}{2} \right)=\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}
If x=πsin(π2)=1x=\pi \Rightarrow \sin \left( \dfrac{\pi }{2} \right)=1
If x=3π2sin(3π22)=sin(3π4)=12x=\dfrac{3\pi }{2}\Rightarrow \sin \left( \dfrac{\dfrac{3\pi }{2}}{2} \right)=\sin \left( \dfrac{3\pi }{4} \right)=\dfrac{1}{\sqrt{2}}
If x=2πsin(2π2)=sinπ=0x=2\pi \Rightarrow \sin \left( \dfrac{2\pi }{2} \right)=\sin \pi =0
If x=5π2sin(5π22)=sin(5π4)=12x=\dfrac{5\pi }{2}\Rightarrow \sin \left( \dfrac{\dfrac{5\pi }{2}}{2} \right)=\sin \left( \dfrac{5\pi }{4} \right)=\dfrac{1}{\sqrt{2}}
If x=3πsin(3π2)=1x=3\pi \Rightarrow \sin \left( \dfrac{3\pi }{2} \right)=-1
If x=7π2sin(7π22)=sin(7π4)=12x=\dfrac{7\pi }{2}\Rightarrow \sin \left( \dfrac{\dfrac{7\pi }{2}}{2} \right)=\sin \left( \dfrac{7\pi }{4} \right)=-\dfrac{1}{\sqrt{2}}
If x=4πsin(4π2)=sin2π=0x=4\pi \Rightarrow \sin \left( \dfrac{4\pi }{2} \right)=\sin 2\pi =0
Plotting the graph of the function y=sin(x2)y=\sin \left( \dfrac{x}{2} \right) from the above points, then we will get

From the above graph we can say that the critical points are 00, π\pi , 2π2\pi , 3π3\pi , 4π4\pi .
The zeros of the graph at 00, 2π2\pi , 4π4\pi .
The maximum of the graph at π\pi .
The minimum of the graph at 3π3\pi .

Note: We can also calculate the critical point of the function y=sin(x2)y=\sin \left( \dfrac{x}{2} \right) from the critical points of y=sinxy=\sin x. The graph of the function y=sinxy=\sin x will be

From the above graph the critical point of y=sinxy=\sin x are 00, π2\dfrac{\pi }{2}, π\pi , 3π2\dfrac{3\pi }{2}, 2π2\pi . If we multiply the above values with two then we will get the critical point of y=sin(x2)y=\sin \left( \dfrac{x}{2} \right).