Solveeit Logo

Question

Question: How do you find the critical numbers of \(f\left( x \right) = {x^{\dfrac{2}{3}}} + {x^{ - \dfrac{1}{...

How do you find the critical numbers of f(x)=x23+x13f\left( x \right) = {x^{\dfrac{2}{3}}} + {x^{ - \dfrac{1}{3}}}?

Explanation

Solution

In order to determine the critical numbers for the above function, first find the derivative of the function with respect to x . Put the derivative equal to zero to find out the value of xx. The values of xx are nothing but the critical number of f(x)f\left( x \right)
Formula:
ddx(lnx)=1x\dfrac{d}{{dx}}(\ln x) = \dfrac{1}{x}
ddx(ex)=ex\dfrac{d}{{dx}}({e^x}) = {e^x}
ddx(xn)=nxn1\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}

Complete step by step solution:
We are given a function f(x)=x23+x13f\left( x \right) = {x^{\dfrac{2}{3}}} + {x^{ - \dfrac{1}{3}}}
In order to find the critical number of the above function, we first know what are critical numbers.
Critical numbers of any function f(x)f\left( x \right) are the values of variable x for which derivative of
f(x)=0f'(x) = 0.
For this, we have to first find out the derivative of our function with respect to .
ddxf(x)=ddx(x23+x13)\dfrac{d}{{dx}}f\left( x \right) = \dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}} + {x^{ - \dfrac{1}{3}}}} \right)
Separating the derivative inside the bracket , we get
f(x)=ddx(x23)+ddx(x13)f'\left( x \right) = \dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{x^{ - \dfrac{1}{3}}}} \right)
As we know the derivative of variable xxraised to power some value nn is ddx(xn)=nxn1\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}. Applying this rule to the above equation to find the derivative of both the terms, we get
f(x)=23x231+13x131 =23x233+13x133 =23x13+13x43  f'\left( x \right) = \dfrac{2}{3}{x^{\dfrac{2}{3} - 1}} + \dfrac{1}{3}{x^{ - \dfrac{1}{3} - 1}} \\\ = \dfrac{2}{3}{x^{\dfrac{{2 - 3}}{3}}} + \dfrac{1}{3}{x^{ - \dfrac{{1 - 3}}{3}}} \\\ = \dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}} \\\
Now putting the f(x)=0f'(x) = 0 to obtain the critical numbers
f(x)=23x13+13x43=0 23x13+13x43=0  f'(x) = \dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}} = 0 \\\ \dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}} = 0 \\\
Multiplying both sides of the equation with 3x13\dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}, our equation
becomes
(3x13)(23x13+13x43)=0×3x13\left( {\dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}} \right)\left( {\dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}}} \right) = 0 \times \dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}
Simplifying further by using the rule of exponent that aman=amn\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}
(3x13)(23x13+13x43)=0×3x13 2(x13x13)+x43x13=0 2(x13+13)+x43+13=0 2(x0)+x33=0  \left( {\dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}} \right)\left( {\dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}}} \right) = 0 \times \dfrac{3}{{{x^{ - \dfrac{1}{3}}}}} \\\ 2\left( {\dfrac{{{x^{\dfrac{{ - 1}}{3}}}}}{{{x^{ - \dfrac{1}{3}}}}}} \right) + \dfrac{{{x^{\dfrac{{ - 4}}{3}}}}}{{{x^{ - \dfrac{1}{3}}}}} = 0 \\\ 2\left( {{x^{\dfrac{{ - 1}}{3} + \dfrac{1}{3}}}} \right) + {x^{\dfrac{{ - 4}}{3} + \dfrac{1}{3}}} = 0 \\\ 2\left( {{x^0}} \right) + {x^{\dfrac{{ - 3}}{3}}} = 0 \\\
As we know anything raised to the power zero equal to one
2+x1=0 x1=2 1x=2  2 + {x^{ - 1}} = 0 \\\ {x^{ - 1}} = - 2 \\\ \dfrac{1}{x} = - 2 \\\
Taking reciprocal on both of the sides, we get
x=12x = - \dfrac{1}{2}
Therefore, the critical number for functionf(x)=x23+x13f\left( x \right) = {x^{\dfrac{2}{3}}} + {x^{ - \dfrac{1}{3}}}is x=12x = - \dfrac{1}{2}.
Additional Information:
1.What is Differentiation?
It is a method by which we can find the derivative of the function .It is a process through which we can find the instantaneous rate of change in a function based on one of its variables. Let y = f(x) be a function of x. So the rate of change of yyper unit change in xx is given by:
dydx\dfrac{{dy}}{{dx}}.

Note:
1.Don’t forget to cross-check your answer at least once.
2.Differentiation is basically the inverse of integration.
3. Critical numbers are those values of x at which the graph of function changes.