Solveeit Logo

Question

Question: How do you find the critical numbers for \(\dfrac{2-x}{{{\left( x+2 \right)}^{3}}}\) to determine th...

How do you find the critical numbers for 2x(x+2)3\dfrac{2-x}{{{\left( x+2 \right)}^{3}}} to determine the maximum and minimum?

Explanation

Solution

In order to find the critical numbers for the given function we will first calculate the value of first order derivative of the given function i.e. dydx\dfrac{dy}{dx} if the given function is y=2x(x+2)3y=\dfrac{2-x}{{{\left( x+2 \right)}^{3}}}. Then we will equate the value of dydx\dfrac{dy}{dx} to zero to find the critical points.

Complete step by step solution:
We have been given an expression 2x(x+2)3\dfrac{2-x}{{{\left( x+2 \right)}^{3}}}.
We have to find the critical numbers for the given expression.
Let us assume that the given function is y=2x(x+2)3y=\dfrac{2-x}{{{\left( x+2 \right)}^{3}}}.
To find the critical points first we have to find the value of dydx\dfrac{dy}{dx}.
Now, differentiating the given function with respect to x we will get
y=ddx(2x(x+2)3)\Rightarrow y=\dfrac{d}{dx}\left( \dfrac{2-x}{{{\left( x+2 \right)}^{3}}} \right)
Now, we know that by quotient rule of differentiation ddx(f(x)g(x))=g(x)ddxf(x)f(x)ddxg(x)(g(x))2\dfrac{d}{dx}\left( \dfrac{f(x)}{g(x)} \right)=\dfrac{g(x)\dfrac{d}{dx}f(x)-f(x)\dfrac{d}{dx}g(x)}{{{\left( g(x) \right)}^{2}}}
Here we have f(x)=(2x)f(x)=\left( 2-x \right) and g(x)=(x+2)3g(x)={{\left( x+2 \right)}^{3}}
Now, applying the formula to the given function we will get
dydx=((x+2)3ddx(2x)(2x)ddx(x+2)3((x+2)3)2)\Rightarrow \dfrac{dy}{dx}=\left( \dfrac{{{\left( x+2 \right)}^{3}}\dfrac{d}{dx}\left( 2-x \right)-\left( 2-x \right)\dfrac{d}{dx}{{\left( x+2 \right)}^{3}}}{{{\left( {{\left( x+2 \right)}^{3}} \right)}^{2}}} \right)
Now, we know that ddxxn=nxn1\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}
Now, applying the formula and simplifying the above obtained equation we will get

& \Rightarrow \dfrac{dy}{dx}=\left( \dfrac{{{\left( x+2 \right)}^{3}}\left( -1 \right)-\left[ \left( 2-x \right)3{{\left( x+2 \right)}^{2}} \right]}{{{\left( x+2 \right)}^{6}}} \right) \\\ & \Rightarrow \dfrac{dy}{dx}=\left( \dfrac{-{{\left( x+2 \right)}^{3}}-\left[ \left( 2-x \right)3{{\left( x+2 \right)}^{2}} \right]}{{{\left( x+2 \right)}^{6}}} \right) \\\ \end{aligned}$$ Now, putting the value of $\dfrac{dy}{dx}$ equal to zero we will get $$\Rightarrow \left( \dfrac{-{{\left( x+2 \right)}^{3}}-\left[ \left( 2-x \right)3{{\left( x+2 \right)}^{2}} \right]}{{{\left( x+2 \right)}^{6}}} \right)=0$$ Now, simplifying the above obtained equation we will get $$\begin{aligned} & \Rightarrow -{{\left( x+2 \right)}^{3}}-\left[ \left( 2-x \right)3{{\left( x+2 \right)}^{2}} \right]=0 \\\ & \Rightarrow -{{\left( x+2 \right)}^{3}}=3{{\left( x+2 \right)}^{2}}\left( 2-x \right) \\\ & \Rightarrow -\left( x+2 \right)=3\left( 2-x \right) \\\ & \Rightarrow -x-2=6-3x \\\ & \Rightarrow -x+3x=6+2 \\\ & \Rightarrow 2x=8 \\\ & \Rightarrow x=\dfrac{8}{2} \\\ & \Rightarrow x=4 \\\ \end{aligned}$$ Also when we put the denominator of the given equation equal to zero we will get $\begin{aligned} & \Rightarrow {{\left( x+2 \right)}^{6}}=0 \\\ & \Rightarrow x=-2 \\\ \end{aligned}$ **Hence $x=-2$ and $x=4$ are the critical points for the given equation.** **Note:** We can also find the point of maxima and minima by using the second order derivative. If the value of second order derivative is negative the function has a point of maxima and if the value of second order derivative is positive the function has a point of minima.