Solveeit Logo

Question

Question: How do you find the binomial expansion of \[{\left( {x + y} \right)^7}\]?...

How do you find the binomial expansion of (x+y)7{\left( {x + y} \right)^7}?

Explanation

Solution

Given a binomial expression with some exponent. We have to find the binomial expansion of the given expression. We will apply the binomial formula (a+b)n=nC0an(b)0+nC1an1(b)1+nC2an2(b)2+nC3an3(b)3++nCna0(b)n{\left( {a + b} \right)^n} = {}^n{C_0}{a^n}{\left( b \right)^0} + {}^n{C_1}{a^{n - 1}}{\left( b \right)^1} + {}^n{C_2}{a^{n - 2}}{\left( b \right)^2} + {}^n{C_3}{a^{n - 3}}{\left( b \right)^3} + \ldots \ldots + {}^n{C_n}{a^0}{\left( b \right)^n}. Then, we will substitute the value of a, b and n from the given expression, we will simplify the expression.

Formula used:
The binomial expansion formula is given by:
(a+b)n=nC0an(b)0+nC1an1(b)1+nC2an2(b)2+nC3an3(b)3++nCna0(b)n{\left( {a + b} \right)^n} = {}^n{C_0}{a^n}{\left( b \right)^0} + {}^n{C_1}{a^{n - 1}}{\left( b \right)^1} + {}^n{C_2}{a^{n - 2}}{\left( b \right)^2} + {}^n{C_3}{a^{n - 3}}{\left( b \right)^3} + \ldots \ldots + {}^n{C_n}{a^0}{\left( b \right)^n}
WherenC0{}^n{C_0}, nC1{}^n{C_1}, nC2{}^n{C_2}, …. and nCn{}^n{C_n} are called binomial coefficients.
The formula for nCr{}^n{C_r} is given by:
nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}

Complete step by step solution:
We are given the binomial expression, (x+y)7{\left( {x + y} \right)^7}. First, we will apply the binomial formula by substituting a=xa = x, b=yb = y and n=7n = 7.
(x+y)7=7C0x7(y)0+7C2x71(y)1+7C2x72(y)2+7C3x73(y)3+7C4x74(y)4+7C5x75(y)5+7C6x76(y)6+7C7x77(y)7{\left( {x + y} \right)^7} = {}^7{C_0}{x^7}{\left( y \right)^0} + {}^7{C_2}{x^{7 - 1}}{\left( y \right)^1} + {}^7{C_2}{x^{7 - 2}}{\left( y \right)^2} + {}^7{C_3}{x^{7 - 3}}{\left( y \right)^3} + {}^7{C_4}{x^{7 - 4}}{\left( y \right)^4} + {}^7{C_5}{x^{7 - 5}}{\left( y \right)^5} + {}^7{C_6}{x^{7 - 6}}{\left( y \right)^6} + {}^7{C_7}{x^{7 - 7}}{\left( y \right)^7}
On simplifying the expression, we get:
(x+y)7=7C0x7(1)+7C2x6y+7C2x5(y)2+7C3x4(y)3+7C4x3(y)4+7C5x2(y)5+7C6x(y)6+7C7(1)(y)7\Rightarrow {\left( {x + y} \right)^7} = {}^7{C_0}{x^7}\left( 1 \right) + {}^7{C_2}{x^6}y + {}^7{C_2}{x^5}{\left( y \right)^2} + {}^7{C_3}{x^4}{\left( y \right)^3} + {}^7{C_4}{x^3}{\left( y \right)^4} + {}^7{C_5}{x^2}{\left( y \right)^5} + {}^7{C_6}x{\left( y \right)^6} + {}^7{C_7}\left( 1 \right){\left( y \right)^7}
Now, we will apply the formula nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} to the expression.
(x+y)7=7!0!(70)!x7+7!1!(71)!x6y+7!2!(72)!x5(y)2+7!3!(73)!x4(y)3+7!4!(74)!x3(y)4+7!5!(75)!x2(y)5+7!6!(76)!x(y)6+7!7!(77)!(1)(y)7\Rightarrow {\left( {x + y} \right)^7} = \dfrac{{7!}}{{0!\left( {7 - 0} \right)!}}{x^7} + \dfrac{{7!}}{{1!\left( {7 - 1} \right)!}}{x^6}y + \dfrac{{7!}}{{2!\left( {7 - 2} \right)!}}{x^5}{\left( y \right)^2} + \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}}{x^4}{\left( y \right)^3} + \dfrac{{7!}}{{4!\left( {7 - 4} \right)!}}{x^3}{\left( y \right)^4} + \dfrac{{7!}}{{5!\left( {7 - 5} \right)!}}{x^2}{\left( y \right)^5} + \dfrac{{7!}}{{6!\left( {7 - 6} \right)!}}x{\left( y \right)^6} + \dfrac{{7!}}{{7!\left( {7 - 7} \right)!}}\left( 1 \right){\left( y \right)^7}
Now, on simplifying the expansion by applying the factorial formula n!=n×(n1)×(n2)××3×2×1n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times \ldots \ldots \times 3 \times 2 \times 1, we get:
(x+y)7=(1)x7+7×6!1!6!x6y+7×6×5!2!5!x5(y)2+7×6×5×4!3×2×1×4!x4(y)3+7×6×5×4!3×2×1×4!x3(y)4+7×6×5!5!×2×1x2(y)5+7×6!6!1!x(y)6+(1)(1)(y)7\Rightarrow {\left( {x + y} \right)^7} = \left( 1 \right){x^7} + \dfrac{{7 \times 6!}}{{1!6!}}{x^6}y + \dfrac{{7 \times 6 \times 5!}}{{2!5!}}{x^5}{\left( y \right)^2} + \dfrac{{7 \times 6 \times 5 \times 4!}}{{3 \times 2 \times 1 \times 4!}}{x^4}{\left( y \right)^3} + \dfrac{{7 \times 6 \times 5 \times 4!}}{{3 \times 2 \times 1 \times 4!}}{x^3}{\left( y \right)^4} + \dfrac{{7 \times 6 \times 5!}}{{5! \times 2 \times 1}}{x^2}{\left( y \right)^5} + \dfrac{{7 \times 6!}}{{6!1!}}x{\left( y \right)^6} + \left( 1 \right)\left( 1 \right){\left( y \right)^7}
Now, cancel out the common terms, we get:
(x+y)7=x7+7x6y+21x5y2+35x4y3+35x3y4+21x2y5+7xy6+y7\Rightarrow {\left( {x + y} \right)^7} = {x^7} + 7{x^6}y + 21{x^5}{y^2} + 35{x^4}{y^3} + 35{x^3}{y^4} + 21{x^2}{y^5} + 7x{y^6} + {y^7}

Final answer: Hence, the binomial expansion of (x+y)7{\left( {x + y} \right)^7} is x7+7x6y+21x5y2+35x4y3+35x3y4+21x2y5+7xy6+y7{x^7} + 7{x^6}y + 21{x^5}{y^2} + 35{x^4}{y^3} + 35{x^3}{y^4} + 21{x^2}{y^5} + 7x{y^6} + {y^7}

Note:
The students must note that there is an alternate method to solve such types of questions. In the alternate method there is a need to know the relation between binomial expansion and Pascal’s triangle.
In Pascal's triangle, we can write the expansion of (a+b)n{\left( {a + b} \right)^n} from n+1n + 1 row number. The terms without coefficients of (a+b)n{\left( {a + b} \right)^n} in Pascal’s triangle are an,an1b,an2b2,an3b3,,bn{a^n},{a^{n - 1}}b,{a^{n - 2}}{b^2},{a^{n - 3}}{b^3}, \ldots ,{b^n}
Here, a=xa = x, b=yb = y and n=7n = 7
The eighth row of the Pascal triangle is given by:
1 7 21 35 35 21 7 1 …… (1)
Also, the terms without the coefficients of (a+b)7{\left( {a + b} \right)^7}
(a+b)7=a7+a6b+a5b2+a4b3+a3b4+a2b5+ab6+b7{\left( {a + b} \right)^7} = {a^7} + {a^6}b + {a^5}{b^2} + {a^4}{b^3} + {a^3}{b^4} + {a^2}{b^5} + a{b^6} + {b^7} …… (2)
Now, we will combine the equation (1) and (2), to write the expansion:
(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7\Rightarrow {\left( {a + b} \right)^7} = {a^7} + 7{a^6}b + 21{a^5}{b^2} + 35{a^4}{b^3} + 35{a^3}{b^4} + 21{a^2}{b^5} + 7a{b^6} + {b^7}
Now, substitute a=xa = x and b=yb = y into the expression.
(x+y)7=x7+7x6y+21x5y2+35x4y3+35x3y4+21x2y5+7xy6+y7\Rightarrow {\left( {x + y} \right)^7} = {x^7} + 7{x^6}y + 21{x^5}{y^2} + 35{x^4}{y^3} + 35{x^3}{y^4} + 21{x^2}{y^5} + 7x{y^6} + {y^7}
Therefore, the required expansion is x7+7x6y+21x5y2+35x4y3+35x3y4+21x2y5+7xy6+y7{x^7} + 7{x^6}y + 21{x^5}{y^2} + 35{x^4}{y^3} + 35{x^3}{y^4} + 21{x^2}{y^5} + 7x{y^6} + {y^7}