Solveeit Logo

Question

Question: How do you find the asymptote(s) or hole(s) of \(f\left( x \right) = \dfrac{{x + 3}}{{{x^2} - 9}}\) ...

How do you find the asymptote(s) or hole(s) of f(x)=x+3x29f\left( x \right) = \dfrac{{x + 3}}{{{x^2} - 9}} ?

Explanation

Solution

First make sure the rational function is written in simplified (reduced) form.
Then, look for values that cause the denominator to be zero (and numerator to be zero); that is, we solve d(c)=0d\left( c \right) = 0 , where d(x)d\left( x \right) is the denominator of f(x)f\left( x \right) , and then evaluate limxcf(x)\mathop {\lim }\limits_{x \to {c^ - }} f\left( x \right) and limxc+f(x)\mathop {\lim }\limits_{x \to {c^ + }} f\left( x \right) to ascertain the behavior of the function at x=cx = c .
To find the horizontal asymptotes we compute limx+f(x)\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) and limxf(x)\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) .
If limx+f(x)=L\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L or limxf(x)=L\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = L , then the line y=Ly = L is a horizontal asymptote of the graph of ff .

Formula used: The line x=cx = c is a vertical asymptote of the graph of ff if either of the one-sided limits limxcf(x)\mathop {\lim }\limits_{x \to {c^ - }} f\left( x \right) or limxc+f(x)\mathop {\lim }\limits_{x \to {c^ + }} f\left( x \right) is infinite.
The line y=Ly = L is a horizontal asymptote of the graph of ff if
limx+f(x)=L\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L or limxf(x)=L\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = L

Complete step-by-step solution:
First make sure the rational function is written in simplified (reduced) form.
Because vertical asymptote for f(x)=x+3x29f\left( x \right) = \dfrac{{x + 3}}{{{x^2} - 9}} occur at values of cc for which limxcf(x)\mathop {\lim }\limits_{x \to {c^ - }} f\left( x \right) or limxc+f(x)\mathop {\lim }\limits_{x \to {c^ + }} f\left( x \right) is infinite, we look for values that cause the denominator to be zero (and numerator to be zero); that is, we solve d(c)=0d\left( c \right) = 0, where d(x)d\left( x \right) is the denominator of f(x)f\left( x \right), and then evaluate limxcf(x)\mathop {\lim }\limits_{x \to {c^ - }} f\left( x \right) and limxc+f(x)\mathop {\lim }\limits_{x \to {c^ + }} f\left( x \right) to ascertain the behavior of the function at x=cx = c.
To find the horizontal asymptotes we compute limx+f(x)\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) and limxf(x)\mathop {\lim }\limits_{x \to - \infty } f\left( x \right). If limx+f(x)=L\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L or limxf(x)=L\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = L, then the line y=Ly = L is a horizontal asymptote of the graph of ff.
Now, consider f(x)=x+3x29f\left( x \right) = \dfrac{{x + 3}}{{{x^2} - 9}}
We have to find its asymptote.
We can simplify the function using identity a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right).
Denominator can be simplified using this identity by putting a=xa = x and b=3b = 3.
So, putting a=xa = x and b=3b = 3in a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right).
x29=(x3)(x+3)\Rightarrow {x^2} - 9 = \left( {x - 3} \right)\left( {x + 3} \right)
Now, putting this simplified version of x29{x^2} - 9 in f(x)=x+3x29f\left( x \right) = \dfrac{{x + 3}}{{{x^2} - 9}}.
f(x)=x+3(x3)(x+3)\Rightarrow f\left( x \right) = \dfrac{{x + 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}
Cancel out (x+3)\left( {x + 3} \right) from numerator and denominator.
f(x)=1x3\Rightarrow f\left( x \right) = \dfrac{1}{{x - 3}}
Vertical Asymptotes:
We know that vertical asymptotes are found by setting the denominator equal to zero, because this is the value for which the function is undefined.
So, putting x3=0x - 3 = 0, to find vertical asymptotes of given function.
Thus, x=3x = 3 is the value that causes division by zero, so we find limx3f(x)\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) and limx3+f(x)\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) to ascertain the behavior of the function at x=3x = 3.
Putting f(x)=1x3f\left( x \right) = \dfrac{1}{{x - 3}}in limx3+f(x)\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right), we get
limx3+1x3=+\Rightarrow \mathop {\lim }\limits_{x \to {3^ + }} \dfrac{1}{{x - 3}} = + \infty
Putting f(x)=1x3f\left( x \right) = \dfrac{1}{{x - 3}}in limx3f(x)\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right), we get
limx31x3=\Rightarrow \mathop {\lim }\limits_{x \to {3^ - }} \dfrac{1}{{x - 3}} = - \infty
This means that x=3x = 3 is a vertical asymptote and the graph is moving downward as x3x \to 3 from the left and upward as x3x \to 3 from the right.
Horizontal Asymptotes:
To find the horizontal asymptotes we compute limx+f(x)\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) and limxf(x)\mathop {\lim }\limits_{x \to - \infty } f\left( x \right).
Putting f(x)=1x3f\left( x \right) = \dfrac{1}{{x - 3}}in limx+f(x)\mathop {\lim }\limits_{x \to + \infty } f\left( x \right), we get
limx+f(x)=limx+1x3\Rightarrow \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \dfrac{1}{{x - 3}}
Dividing numerator and denominator by xx, we get
limx+1x3=limx+1x13x\Rightarrow \mathop {\lim }\limits_{x \to + \infty } \dfrac{1}{{x - 3}} = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{\dfrac{1}{x}}}{{1 - \dfrac{3}{x}}}
Now, by direct substituting and using 1=0\dfrac{1}{\infty } = 0, we get
limx+1x3=0\Rightarrow \mathop {\lim }\limits_{x \to + \infty } \dfrac{1}{{x - 3}} = 0
Putting f(x)=1x3f\left( x \right) = \dfrac{1}{{x - 3}}in limxf(x)\mathop {\lim }\limits_{x \to - \infty } f\left( x \right), we get
limxf(x)=limx1x3\Rightarrow \mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \dfrac{1}{{x - 3}}
Dividing numerator and denominator by xx, we get
limx1x3=limx1x13x\Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{1}{{x - 3}} = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\dfrac{1}{x}}}{{1 - \dfrac{3}{x}}}
Now, by direct substituting and using 1=0\dfrac{1}{\infty } = 0, we get
limx1x3=0\Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{1}{{x - 3}} = 0
So, limx+f(x)=0\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 0 and limxf(x)=0\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 0.
Thus, y=0y = 0 is a horizontal asymptote.

Therefore, f(x)=x+3x29f\left( x \right) = \dfrac{{x + 3}}{{{x^2} - 9}} has vertical asymptote at x=3x = 3 and horizontal asymptote at y=0y = 0.

Note: We can also find the horizontal and vertical asymptotes by looking at the graph of function
f(x)=x+3x29\Rightarrow f\left( x \right) = \dfrac{{x + 3}}{{{x^2} - 9}}.

Therefore, f(x)=x+3x29f\left( x \right) = \dfrac{{x + 3}}{{{x^2} - 9}} has vertical asymptote at x=3x = 3 and horizontal asymptote at y=0y = 0.