Solveeit Logo

Question

Question: How do you find the area between \( x = 4 - {y^2} \) and \( x = y - 2 \) ?...

How do you find the area between x=4y2x = 4 - {y^2} and x=y2x = y - 2 ?

Explanation

Solution

Hint : In order to find the area, we need to know the region between the equations, and from the equation we can see that the first equation would represent a parabola and the second one would represent a straight line. Compare the two equations to find the points of intersection then using integration find the area inside them.
Formula used:
xndx=xn+1n+1\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}}
adx=adx\int {adx = } a\int {dx}

Complete step-by-step answer :
The first Equation given is: x=4y2x = 4 - {y^2} and the second is x=y2x = y - 2 .
Since, value of xx is given in both, so comparing the two equations, we get:
4y2=y2 y2+y6=0   4 - {y^2} = y - 2 \\\ {y^2} + y - 6 = 0 \;
Comparing the obtained Quadratic Equation with the standard Quadratic Equation ax2+bx+c=0a{x^2} + bx + c = 0 , we get:
a=1 b=1 c=6   a = 1 \\\ b = 1 \\\ c = - 6 \;
Solving for discriminant, we get:
D=b24ac D=124×1×(6) D=1+24 D=25=5   D = \sqrt {{b^2} - 4ac} \\\ D = \sqrt {{1^2} - 4 \times 1 \times \left( { - 6} \right)} \\\ D = \sqrt {1 + 24} \\\ D = \sqrt {25} = 5 \;
Quadratic Formula to find both roots of a quadratic equation as
y1=b+b24ac2ay_1 = \dfrac{{ - b + \sqrt {{b^2} - 4ac} }}{{2a}} and y2=bb24ac2ay_2 = \dfrac{{ - b - \sqrt {{b^2} - 4ac} }}{{2a}}
y1,y2y_1,y_2 are root to quadratic equations ax2+bx+ca{x^2} + bx + c .
For, y1y_1 :
y1=b+b24ac2a y1=1+52×1=42=2  y_1 = \dfrac{{ - b + \sqrt {{b^2} - 4ac} }}{{2a}} \\\ y_1 = \dfrac{{ - 1 + 5}}{{2 \times 1}} = \dfrac{4}{2} = 2 \\\
For, y2y_2 :
y2=bb24ac2a y2=152×1=62=3   y_2 = \dfrac{{ - b - \sqrt {{b^2} - 4ac} }}{{2a}} \\\ y_2 = \dfrac{{ - 1 - 5}}{{2 \times 1}} = \dfrac{{ - 6}}{2} = - 3 \;
Hence the factors will be (yy1)and(yy2)(y - y_1)\,and\,(y - y_2)\, that is (y2)and(y+3)(y - 2)\,and\,(y + 3)\, .
Putting the values of y1y_1 and y2y_2 in the equation x=y2x = y - 2 one by one to get x1x_1 and x2x_2 :
x1=y12=22=0x_1 = y_1 - 2 = 2 - 2 = 0
x2=y22=32=5x_2 = y_2 - 2 = - 3 - 2 = - 5
Therefore, the points of intersection are:
(x1,y1)and(x2,y2)(x_1,y_1)\,and\,(x_2,y_2)\, , which are (0,2)and(5,3)(0,2)\,and\,( - 5, - 3)\, .
According to the points obtained, the graph would be:

Since, the starting and ending points for the y-axis are: 3and2- 3and2 .So, the area is starting from 3to2- 3to2 .
Writing the first and second equation in terms of yy and we get:
x=4y2=>y=4xx = 4 - {y^2} = > y = \sqrt {4 - x}
x=y2=>y=x+2x = y - 2 = > y = x + 2
The area under the equation is:
A=32[(4y2)(y2)]dyA = \int\limits_{ - 3}^2 {\left[ {\left( {4 - {y^2}} \right) - \left( {y - 2} \right)} \right]} dy
On further solving, we get:
A=32[(4y2)(y2)]dy A=32[4y2y+2]dy A=32[y2y+6]dy A=32y2dy32ydy+632dy A=[y33]32[y22]23+6[y]23 A=[233(3)33][222(3)22]+6[2(3)] A=[83+9][292]+6[2+3] A=8392+92+30 A=8311+92+30 A=1256=20.833   A = \int\limits_{ - 3}^2 {\left[ {\left( {4 - {y^2}} \right) - \left( {y - 2} \right)} \right]} dy \\\ A = \int\limits_{ - 3}^2 {\left[ {4 - {y^2} - y + 2} \right]} dy \\\ A = \int\limits_{ - 3}^2 {\left[ { - {y^2} - y + 6} \right]} dy \\\ A = - \int\limits_{ - 3}^2 {{y^2}} dy - \int\limits_{ - 3}^2 y dy + 6\int\limits_{ - 3}^2 {dy} \\\ A = - {\left[ {\dfrac{{{y^3}}}{3}} \right]_{ - 3}}^2 - {\left[ {\dfrac{{{y^2}}}{2}} \right]^2}_{ - 3} + 6{\left[ y \right]^2}_{ - 3} \\\ A = - \left[ {\dfrac{{{2^3}}}{3} - \dfrac{{{{\left( { - 3} \right)}^3}}}{3}} \right] - \left[ {\dfrac{{{2^2}}}{2} - \dfrac{{{{\left( { - 3} \right)}^2}}}{2}} \right] + 6\left[ {2 - \left( { - 3} \right)} \right] \\\ A = - \left[ {\dfrac{8}{3} + 9} \right] - \left[ {2 - \dfrac{9}{2}} \right] + 6\left[ {2 + 3} \right] \\\ A = - \dfrac{8}{3} - 9 - 2 + \dfrac{9}{2} + 30 \\\ A = - \dfrac{8}{3} - 11 + \dfrac{9}{2} + 30 \\\ A = \dfrac{{125}}{6} = 20.833 \;
Therefore, the area between x=4y2x = 4 - {y^2} and x=y2x = y - 2 is 20.83320.833 sq. units.
So, the correct answer is “ 20.83320.833 sq. units.”.

Note : It's important to find the intersecting points to know the area covered by the parabola and the straight line.
We can also take the value of xx instead of y to find the area, just the values inside the integration would be written in terms of xx and dxdx .