Solveeit Logo

Question

Question: How do you find the area between the loop of \[r = 1 + 2\cos \theta \]?...

How do you find the area between the loop of r=1+2cosθr = 1 + 2\cos \theta ?

Explanation

Solution

Here in this we have to find the area between the loop of r=1+2cosθr = 1 + 2\cos \theta . To find the area we use formula A=12αβ(r)2dθA = \dfrac{1}{2}\int_\alpha ^\beta {{{(r)}^2}d\theta } , where α\alpha and β\beta are the limit points. Hence by substituting all the values in the formula and then by simplifying we obtain the area of one petal.

Complete step by step explanation:
In generally let we consider r=a±bsin(θ)r = a \pm b\sin (\theta ) or r=a±bcos(θ)r = a \pm b\cos (\theta ) where a>0a > 0, b>0b > 0 and aba \ne b
Now consider the given equation r=1+2cosθr = 1 + 2\cos \theta . Here a=1, and b=2 , graph the limacon as shown

To find the area we use the formula
A=12αβ(r)2dθA = \dfrac{1}{2}\int_\alpha ^\beta {{{(r)}^2}d\theta } ------- (1)
Here the limits points are not given.
Therefore, we have to find the value of
α\alpha and β\beta
Now consider the given equation
r=1+2cosθr = 1 + 2\cos \theta ------- (2)
Substitute r=0 in equation (2) we have
0=1+2cos(θ)\Rightarrow 0 = 1 + 2\cos (\theta )
This is written as
12=cos(θ)\Rightarrow - \dfrac{1}{2} = \cos (\theta )
By taking the inverse we have
cos1(12)=θ\Rightarrow {\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = \theta
θ=2π3\Rightarrow \theta = \dfrac{{2\pi }}{3} and θ=4π3\theta = \dfrac{{4\pi }}{3}.
Therefore θ\theta varies from the angle 2π3\dfrac{{2\pi }}{3} to angle 4π3\dfrac{{4\pi }}{3}

\right)$$----------- (3) Substituting equation (2) and equation (3) in equation (1) we have $$A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {{{(1 + 2\cos (\theta ))}^2}d\theta }

Applying the algebraic formula (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab
A=122π34π3(1+4cos(θ)+4cos2(θ))dθ\Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {(1 + 4\cos \left( \theta \right) + 4{{\cos }^2}(\theta ))d\theta }
It can be also written as
A=122π34π3(1+4cos(θ)+2.2cos2(θ))dθ\Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {(1 + 4\cos \left( \theta \right) + 2.2{{\cos }^2}(\theta ))d\theta }
Apply the double angle formula for the cosine function,cos2x=2cos2x12cos2x=cos2x+1\cos 2x = 2{\cos ^2}x - 1\,\,\, \Rightarrow \,\,\,2{\cos ^2}x = \cos 2x + 1, then
A=122π34π3(1+4cos(θ)+2.(cos(2θ)+1))dθ\Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\left( {1 + 4\cos \left( \theta \right) + 2.\left( {\cos (2\theta ) + 1} \right)} \right)d\theta }

\theta \right) + 2\cos (2\theta ) + 2} \right)d\theta } $$ On simplifying we have $$ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\left( {3 + 4\cos \left( \theta \right) + 2\cos (2\theta )} \right)d\theta } $$ Take integral to each term we have $$ \Rightarrow A = \dfrac{1}{2}\left( {3\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {d\theta } + 4\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\cos \left( \theta \right)d\theta } + 2\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\cos (2\theta )} d\theta } \right)$$ On applying the integration, we have $$ \Rightarrow A = \dfrac{1}{2}\left( {3\theta + 4\sin \left( \theta \right) + 2\dfrac{{\sin (2\theta)}}{2}} \right)_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}}$$ $$ \Rightarrow A = \dfrac{1}{2}\left( {3\theta + 4\sin \left( \theta \right) + \sin (2\theta )} \right)_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}}$$ Applying the limit points, we get $$ \Rightarrow A = \dfrac{1}{2}\left( {3 \cdot \dfrac{{4\pi }}{3} + 4\sin \left( {\dfrac{{4\pi }}{3}}\right) + \sin \left( {2 \cdot \dfrac{{4\pi }}{3}} \right) - 3 \cdot \dfrac{{2\pi }}{3} - 4\sin \left({\dfrac{{2\pi }}{3}} \right) + \sin \left( {2 \cdot \dfrac{{2\pi }}{3}} \right)} \right)$$ On simplifying we get $$ \Rightarrow A = \dfrac{1}{2}\left( {4\pi + 4\left( { - \dfrac{{\sqrt 3 }}{2}} \right) + \left( {\dfrac{{\sqrt 3 }}{2}} \right) - 2\pi - 4\left( {\dfrac{{\sqrt 3 }}{2}} \right) - \left( { - \dfrac{{\sqrt 3 }}{2}} \right)} \right)$$ $$ \Rightarrow A = \dfrac{1}{2}\left( {4\pi - \dfrac{{4\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2} - 2\pi - \dfrac{{4\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2}} \right)$$ $$ \Rightarrow A = \dfrac{1}{2}\left( {2\pi - 2 \cdot \dfrac{{4\sqrt 3 }}{2} + 2 \cdot \dfrac{{\sqrt 3 }}{2}} \right)$$ $$ \Rightarrow A = \dfrac{1}{2}\left( {2\pi - 4\sqrt 3 + \sqrt 3 } \right)$$ $$ \Rightarrow A = \dfrac{1}{2}\left( {2\pi - 3\sqrt 3 } \right)$$ $$ \Rightarrow A = \pi - \dfrac{{3\sqrt 3 }}{2}$$ **Therefore, the area between the loop of $$r = 1 + 2\cos \theta $$ is $$\therefore \,\,\,A = \pi - \dfrac{{3\sqrt 3 }}{2}$$** **Note:** The area of a petal for the circle for the polar coordinates is given by $$A = \dfrac{1}{2}\int_\alpha ^\beta {{{(r(\theta ))}^2}d\theta } $$. The unit for the area is given as square unit. In the polar form the coordinates are represented in the form of $$\left( {r,\theta } \right)$$where r represents the radius of the circle and the $$\theta $$represents the angle.