Solveeit Logo

Question

Question: How do you find the antiderivative of \(\int{\left( {{x}^{3}}\sin x \right)}dx\) ?...

How do you find the antiderivative of (x3sinx)dx\int{\left( {{x}^{3}}\sin x \right)}dx ?

Explanation

Solution

We have been given an expression consisting of a 3-degree x-variable and a trigonometric function whose antiderivative is to be found. From our prior knowledge of basic calculus, we know that the antiderivative is another name for the integral of the function. Thus, we shall integrate the given expression by integration by parts. Further, we shall keep using the ILATE rule until the expression is totally simplified.

Complete step by step solution:
Given that (x3sinx)dx\int{\left( {{x}^{3}}\sin x \right)}dx.
This can be also written as (x3)(sinx)dx\int{\left( {{x}^{3}} \right)\left( \sin x \right)}dx as the product of x3{{x}^{3}} and sine of x function.
(x3sinx)dx=(x3)(sinx)dx\Rightarrow \int{\left( {{x}^{3}}\sin x \right)}dx=\int{\left( {{x}^{3}} \right)\left( \sin x \right)}dx
Here, we shall apply integration by parts. Here, our first function is sinx\sin x and our second function is x3{{x}^{3}}.
(x3sinx).dx=x3.sinx.dx(sinx.dx).(ddxx3).dx\Rightarrow \int{\left( {{x}^{3}}\sin x \right).dx={{x}^{3}}.\int{\sin x.dx}}-\int{\left( \int{\sin x.dx} \right).\left( \dfrac{d}{dx}{{x}^{3}} \right)}.dx
We know by the formulae of differentiation that ddxxn=nxn1\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} and by the formulae of integration that sinx.dx=cosx+C\int{\sin x.dx=-\cos x+C}.
(x3sinx).dx=x3.(cosx)(cosx).(3x2).dx\Rightarrow \int{\left( {{x}^{3}}\sin x \right).dx={{x}^{3}}.\left( -\cos x \right)}-\int{\left( -\cos x \right).\left( 3{{x}^{2}} \right)}.dx
(x3sinx).dx=x3cosx+3x2cosx.dx\Rightarrow \int{\left( {{x}^{3}}\sin x \right).dx=-{{x}^{3}}\cos x}+3\int{{{x}^{2}}\cos x}.dx …………… equation (1)
Since the second term on the right hand side is not simplified yet thus we shall apply integration by parts again on it.
Let I1=x2cosx.dx{{I}_{1}}=\int{{{x}^{2}}\cos x}.dx
Here, our first function is cosx\cos x and our second function is x2{{x}^{2}}.
I1=x2.cosx.dx(cosx.dx).(ddxx2).dx\Rightarrow {{I}_{1}}={{x}^{2}}.\int{\cos x.dx}-\int{\left( \int{\cos x.dx} \right).\left( \dfrac{d}{dx}{{x}^{2}} \right)}.dx
We know by the formulae of differentiation that ddxxn=nxn1\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} and by the formulae of integration that cosx.dx=sinx+C\int{\cos x.dx=\sin x+C}.
I1=x2.sinxsinx.(2x).dx\Rightarrow {{I}_{1}}={{x}^{2}}.\sin x-\int{\sin x.\left( 2x \right)}.dx
I1=x2.sinx2xsinx.dx\Rightarrow {{I}_{1}}={{x}^{2}}.\sin x-\int{2x\sin x}.dx
Substituting the value of I1{{I}_{1}} in equation (1), we get
(x3sinx).dx=x3cosx+3(x2.sinx2xsinx.dx)\Rightarrow \int{\left( {{x}^{3}}\sin x \right).dx=-{{x}^{3}}\cos x}+3\left( {{x}^{2}}.\sin x-\int{2x\sin x}.dx \right)
(x3sinx).dx=x3cosx+3x2.sinx32xsinx.dx\Rightarrow \int{\left( {{x}^{3}}\sin x \right).dx=-{{x}^{3}}\cos x}+3{{x}^{2}}.\sin x-3\int{2x\sin x}.dx
(x3sinx).dx=x3cosx+3x2.sinx6xsinx.dx\Rightarrow \int{\left( {{x}^{3}}\sin x \right).dx=-{{x}^{3}}\cos x}+3{{x}^{2}}.\sin x-6\int{x\sin x}.dx ……………… equation (2)
Since the last term on the right hand side is not simplified yet again thus we shall apply integration by parts again on it.
Let I2=xsinx.dx{{I}_{2}}=\int{x\sin x}.dx
Here, our first function is sinx\sin x and our second function is xx.
I2=x.sinx.dx(sinx.dx).(ddxx).dx\Rightarrow {{I}_{2}}=x.\int{\sin x.dx}-\int{\left( \int{\sin x.dx} \right).\left( \dfrac{d}{dx}x \right)}.dx
I2=x.cosxcosx.(1).dx\Rightarrow {{I}_{2}}=x.\cos x-\int{-\cos x.\left( 1 \right)}.dx
I2=x.cosx+cosx.dx\Rightarrow {{I}_{2}}=x.\cos x+\int{\cos x.}dx
We know by the formulae of integration that cosx.dx=sinx+C\int{\cos x.dx=\sin x+C}.
I2=x.cosx+sinx+C\Rightarrow {{I}_{2}}=x.\cos x+\sin x+C
Substituting the value of I2{{I}_{2}} in equation (2), we get
(x3sinx).dx=x3cosx+3x2.sinx6(x.cosx+sinx+C)\Rightarrow \int{\left( {{x}^{3}}\sin x \right).dx=-{{x}^{3}}\cos x}+3{{x}^{2}}.\sin x-6\left( x.\cos x+\sin x+C \right)
(x3sinx).dx=x3cosx+3x2.sinx6x.cosx+6sinx+C\Rightarrow \int{\left( {{x}^{3}}\sin x \right).dx=-{{x}^{3}}\cos x}+3{{x}^{2}}.\sin x-6x.\cos x+6\sin x+C
Therefore, the antiderivative of (x3sinx)dx\int{\left( {{x}^{3}}\sin x \right)}dx is x3cosx+3x2.sinx6x.cosx+6sinx+C-{{x}^{3}}\cos x+3{{x}^{2}}.\sin x-6x.\cos x+6\sin x+C.

Note: Since we do not have a direct formula of integration for the given expression which is a product of two different functions, therefore, we integrated this function by applying integration by parts. Here, the function was manipulated by again and again integrating it by parts until the most all the terms are property integrated.