Solveeit Logo

Question

Question: How do you find the antiderivative of \[\int{\left( {{\sin }^{7}}x \right)dx}\] from \[[-1,1]\]?...

How do you find the antiderivative of (sin7x)dx\int{\left( {{\sin }^{7}}x \right)dx} from [1,1][-1,1]?

Explanation

Solution

To solve the given integral, we need to know some of the properties of integration. The property we will be using to solve this integration is abf(x)=abf(a+bx)\int\limits_{a}^{b}{f(x)}=\int\limits_{a}^{b}{f(a+b-x)}. This property is used as follows,
Let’s say I=abf(x)I=\int\limits_{a}^{b}{f(x)}, using the above property we get I=abf(a+bx)I=\int\limits_{a}^{b}{f(a+b-x)}. Adding both of the above integrals, we get 2I=abf(x)+abf(a+bx)2I=\int\limits_{a}^{b}{f(x)}+\int\limits_{a}^{b}{f(a+b-x)}.

Complete step-by-step answer:
We are asked to find the antiderivative of (sin7x)dx\int{\left( {{\sin }^{7}}x \right)dx} from [1,1][-1,1]. This means we have to find the value of the definite integral 11(sin7x)dx\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}. We can use the integration property abf(x)=abf(a+bx)\int\limits_{a}^{b}{f(x)}=\int\limits_{a}^{b}{f(a+b-x)}. Using this property, we get 11(sin7x)dx=11(sin7(11x))dx\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}\left( 1-1-x \right) \right)dx}.
Let’s say I=11(sin7x)dxI=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}. From above, we can also say that I=11(sin7(11x))dxI=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}\left( 1-1-x \right) \right)dx}. Adding both integrals, we get
2I=11(sin7x)dx+11(sin7(11x))dx2I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}+\int\limits_{-1}^{1}{\left( {{\sin }^{7}}\left( 1-1-x \right) \right)dx}
Simplifying the above equation, we get
2I=11(sin7x)dx+11(sin7(x))dx\Rightarrow 2I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}+\int\limits_{-1}^{1}{\left( {{\sin }^{7}}\left( -x \right) \right)dx}
We know that, sin(x)=sinx\sin (-x)=-\sin x. Using the property in the above equation, we get
2I=11(sin7x)dx+11((sinx)7)dx\Rightarrow 2I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}+\int\limits_{-1}^{1}{\left( {{\left( -\sin x \right)}^{7}} \right)dx}
Simplifying the above equation, we get
2I=11(sin7x)dx+11(sin7x)dx\Rightarrow 2I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}+\int\limits_{-1}^{1}{-\left( {{\sin }^{7}}x \right)dx}
As we know that constants can be taken out of the integration, taking 1-1 out of the integration from the second integral in the right-hand side of the above equation, we get
2I=11(sin7x)dx11(sin7x)dx\Rightarrow 2I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}-\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}

& \Rightarrow 2I=0 \\\ & \therefore I=0 \\\ \end{aligned}$$ Thus, we get $$I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}=0$$. **Note:** We can make a general property from the above question, to solve these types of problems as follows: Let’s say $$f(x)$$ is an odd function, from this, we can say that $$f(-x)=f(x)$$. Then the value of the definite integral $$\int\limits_{-a}^{a}{f(x)dx}$$ equals 0. For the given question, we have $$f(x)={{\sin }^{7}}x$$ which is an odd function. Hence, using the above property, we can say that $$\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}=0$$.