Solveeit Logo

Question

Question: How do you find the antiderivative of \[\int {\dfrac{{\sin x}}{{{{\cos }^3}x}}dx} ?\]...

How do you find the antiderivative of sinxcos3xdx?\int {\dfrac{{\sin x}}{{{{\cos }^3}x}}dx} ?

Explanation

Solution

In order to solve this integral first we will assume cosx=t\cos x = t and differentiate it and transfer the given integral in terms of tt . And then we will use the formula as, xndx=xn+1n+1+c\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c} to solve the given integral. And finally, we will substitute the value of tt to get the required result.

Complete step by step answer:
We have to find the antiderivative of sinxcos3xdx\int {\dfrac{{\sin x}}{{{{\cos }^3}x}}dx}
Let us consider the given integral as,
I=sinxcos3xdx (i)I = \int {\dfrac{{\sin x}}{{{{\cos }^3}x}}dx} {\text{ }} - - - \left( i \right)
Now let us assume
cosx=t (ii)\cos x = t{\text{ }} - - - \left( {ii} \right)
As we know that
ddx(cosx)=sinx\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x
So, by differentiating both the sides of equation (ii)\left( {ii} \right) w.r.t xx we get
sinx=dtdx- \sin x = \dfrac{{dt}}{{dx}}
On multiplying by dxdx both sides, we get
sinxdx=dt - \sin xdx = dt{\text{ }}
On multiplying with negative sign both the sides, we get
sinxdx=dt (iii)\Rightarrow \sin xdx = - dt{\text{ }} - - - \left( {iii} \right)
Now substituting the value from equation (ii)\left( {ii} \right) and equation (iii)\left( {iii} \right) in equation (i)\left( i \right) we get
I=dtt3I = \int {\dfrac{{ - dt}}{{{t^3}}}}
Now we know that
1an=an\dfrac{1}{{{a^n}}} = {a^{ - n}}
Therefore, we get
I=t3dtI = \int { - {t^{ - 3}}dt}
As we know that
xndx=xn+1n+1+c\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c}
Therefore, we get
I=t3+13+1+cI = \dfrac{{ - {t^{ - 3 + 1}}}}{{ - 3 + 1}} + c
On solving the numerator and denominator, we get
I=t22+cI = \dfrac{{ - {t^{ - 2}}}}{{ - 2}} + c
On cancelling the negative sign, we get
I=t22+cI = \dfrac{{{t^{ - 2}}}}{2} + c
We know that
an=1an{a^{ - n}} = \dfrac{1}{{{a^n}}}
Therefore, from the above equation, we get
I=12t2+cI = \dfrac{1}{{2{t^2}}} + c
Now using equation (ii)\left( {ii} \right) substitute the value of tt
Therefore, we get
I=12cos2x+cI = \dfrac{1}{{2{{\cos }^2}x}} + c
Hence, the antiderivative of sinxcos3xdx\int {\dfrac{{\sin x}}{{{{\cos }^3}x}}dx} is 12cos2x+c\dfrac{1}{{2{{\cos }^2}x}} + c

Note:
Antiderivative is another name of the inverse derivative, or the indefinite integral. Always remember while calculating antiderivatives never forget to add constant cc in the final result. But students should know that constant will be used only if we have indefinite integral.