Solveeit Logo

Question

Question: How do you find the angle between the vectors \[u = cos\left( {\dfrac{\pi }{3}} \right)i + sin\lef...

How do you find the angle between the vectors u=cos(π3)i+sin(π3)j  and  v=cos(3π4)i+sin(3π4)ju = cos\left( {\dfrac{\pi }{3}} \right)i + sin\left( {\dfrac{\pi }{3}} \right)j\;and\;v = cos\left( {\dfrac{{3\pi }}{4}} \right)i + sin\left( {\dfrac{{3\pi }}{4}} \right)j?

Explanation

Solution

First of all we need to understand what vectors are . Vectors can be said as physical quantities or objects which have both a magnitude and a direction . If the two vectors are supposed to be a\overrightarrow a and b\overrightarrow b . The ‘θ\theta ’ is the angle by which the two vectors are separated . Now , to determine that what is the angle between the two vectors we are going to apply the dot product between those two vectors denoted as a.b\overrightarrow a .\overrightarrow b and the dot product is given as a.b=abcosθ\overrightarrow {a.} \overrightarrow b = |a||b|\cos \theta .

Step by step solution :
The angle θ\theta between two vectors u\overrightarrow u and v\overrightarrow v as per the question given is related to the modulus ( or magnitude ) and scalar ( or dot ) product of
u\overrightarrow u and u\overrightarrow u by the relationship : u.v=uvcosθ\overrightarrow {u.} \overrightarrow v = |u||v|\cos \theta
For the question above , The angle between the two vectors u\overrightarrow u and
v\overrightarrow v will be θ\theta .
Calculating and simplifying the vectors ,
First , assigning the trigonometric values as the functions given of cosine and sine .
u=cos(π3)i+sin(π3)j  =12i+32j\overrightarrow u = cos\left( {\dfrac{\pi }{3}} \right)\mathop i\limits^ \wedge + sin\left( {\dfrac{\pi }{3}} \right)\mathop j\limits^ \wedge \; = \dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{{\sqrt 3 }}{2}\mathop j\limits^ \wedge ------- - 1
v=cos(3π4)i+sin(3π4)j  =22i+22j\overrightarrow v = cos\left( {\dfrac{{3\pi }}{4}} \right)\mathop i\limits^ \wedge + sin\left( {\dfrac{{3\pi }}{4}} \right)\mathop j\limits^ \wedge \; = - \dfrac{{\sqrt 2 }}{2}\mathop i\limits^ \wedge + \dfrac{{\sqrt 2 }}{2}\mathop j\limits^ \wedge ----- - 2
Now we will calculate the modulus of u|\overrightarrow u |= 12i+32j\left| {\dfrac{1}{2}\mathop i\limits^ \wedge + \left. {\dfrac{{\sqrt 3 }}{2}\mathop j\limits^ \wedge } \right|} \right.=
(12)2+(32)2\sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}} = 14+34\sqrt {\dfrac{1}{4} + \dfrac{3}{4}} =1\sqrt 1 =11

v|\overrightarrow v |= 22i+22j\left| { - \dfrac{{\sqrt 2 }}{2}\mathop i\limits^ \wedge + \left. {\dfrac{{\sqrt 2 }}{2}\mathop j\limits^ \wedge } \right|} \right.= (22)2+(22)2\sqrt {{{\left( { - \dfrac{{\sqrt 2 }}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 2 }}{2}} \right)}^2}} = 24+24\sqrt {\dfrac{2}{4} + \dfrac{2}{4}} =1\sqrt 1 =11
And now we perform the scalar product :
u.v\overrightarrow {u.} \overrightarrow v = (12i+32j)\left( {\dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{{\sqrt 3 }}{2}\mathop j\limits^ \wedge } \right). (22i+22j)\left( { - \dfrac{{\sqrt 2 }}{2}\mathop i\limits^ \wedge + \dfrac{{\sqrt 2 }}{2}\mathop j\limits^ \wedge } \right)

= (12)(22)+(32)(22)\left( {\dfrac{1}{2}} \right)\left( { - \dfrac{{\sqrt 2 }}{2}} \right) + \left( {\dfrac{{\sqrt 3 }}{2}} \right)\left( {\dfrac{{\sqrt 2 }}{2}} \right)
= \-24+234   \- \dfrac{{\sqrt 2 }}{4} + \dfrac{{\sqrt 2 \sqrt 3 }}{4} \\\ \\\
=2(31)4\dfrac{{\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{4}
Now applying the formula u.v=uvcosθ\overrightarrow {u.} \overrightarrow v = |u||v|\cos \theta we get :
We will substitute the values after getting each values of L . H . S . and R . H . S . we calculated before in the above formula to get the angle .
2(31)4\dfrac{{\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{4}= 1.1.cosθ1.1.\cos \theta
cosθ\cos \theta = 2(31)4\dfrac{{\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{4}
θ=7π12\theta = \dfrac{{7\pi }}{{12}}
Therefore the angle between the two vectors u\overrightarrow u and v\overrightarrow v is
θ=7π12\theta = \dfrac{{7\pi }}{{12}} .

Note : The vectors are the objects ( physical quantity ) in real life that are having magnitude and direction . For instance , Force and Velocity .
The modulus actually means r\left| {\overrightarrow r } \right|= a2+b2\sqrt {{a^2} + {b^2}}
Always remember by scalar product we refer to dot product .
For above question we calculated the L . H . S . and R . H . S . independently using the formula a.b=abcosθ\overrightarrow {a.} \overrightarrow b = |a||b|\cos \theta . And then combined and substituted the calculated values .