Solveeit Logo

Question

Question: How do you find the amplitude, period and graph \(y = \sec \left( {3\theta } \right)\)?...

How do you find the amplitude, period and graph y=sec(3θ)y = \sec \left( {3\theta } \right)?

Explanation

Solution

First find amplitude, period, phase shift, and vertical shift for given periodic function. Select a few points to graph. Find the points at θ=0\theta = 0, θ=π18\theta = \dfrac{\pi }{{18}}, θ=π9\theta = \dfrac{\pi }{9}, θ=π3\theta = \dfrac{\pi }{3}, θ=2π3\theta = \dfrac{{2\pi }}{3}. List the points in a table. Then graph the trigonometric function using the amplitude, period, phase shift, vertical shift and the points.

Formula used:
For the graph of y=asec(bxc)+dy = a\sec \left( {bx - c} \right) + d
Amplitude: None
Period=2πb = \dfrac{{2\pi }}{{\left| b \right|}}
Phase Shift =cb = \dfrac{c}{b}
Vertical Shift =d = d

Complete step by step answer:
We will use the form y=asec(bxc)+dy = a\sec \left( {bx - c} \right) + d to find the amplitude, period, phase shift, and vertical shift.
Compare the given equation y=sec(3θ)y = \sec \left( {3\theta } \right) with y=asec(bxc)+dy = a\sec \left( {bx - c} \right) + d and find variables a,b,ca,b,c and dd.
a=1a = 1, b=3b = 3, c=0c = 0 and d=0d = 0.
Since the graph of the function sec\sec does not have a maximum or minimum value, there can be no value for the amplitude.
Amplitude: None
Now, find the period using the formula 2πb\dfrac{{2\pi }}{{\left| b \right|}}.
So, we will calculate the period of the function using 2πb\dfrac{{2\pi }}{{\left| b \right|}}.
Period: 2πb\dfrac{{2\pi }}{{\left| b \right|}}
Replace bb with 33 in the formula for period.
Period: 2π3\dfrac{{2\pi }}{{\left| 3 \right|}}
Solve the equation.
Here, we can observe that the absolute value is the distance between a number and zero.
The distance between 00 and 33 is 33.
Period: 2π3\dfrac{{2\pi }}{3}
Divide 2π2\pi by 33.
Period: 2π3\dfrac{{2\pi }}{3}
Now, we will find the phase shift using the formula cb\dfrac{c}{b}.
So, we will calculate the phase shift of the function from cb\dfrac{c}{b}.
Phase Shift: cb\dfrac{c}{b}
Here, replace the values of cc and bb in the equation for phase shift.
Phase Shift: 03\dfrac{0}{3}
Divide 00 by 33.
Phase Shift: 00
Find the vertical shift dd.
Vertical Shift: 00
List the properties of the trigonometric function.
Amplitude: None
Period: 2π3\dfrac{{2\pi }}{3}
Phase Shift: 00(00 to the right)
Vertical Shift: 00
Select a few points to graph.
Find the point at θ=0\theta = 0.
Replace the variable θ\theta with 00 in the expression.
f(0)=sec(3×0)f\left( 0 \right) = \sec \left( {3 \times 0} \right)
Simplify the result.
The exact value of sec(0)\sec \left( 0 \right) is 11.
f(0)=1f\left( 0 \right) = 1
The final answer is 11.
Find the point at θ=π18\theta = \dfrac{\pi }{{18}}.
Replace the variable θ\theta with π18\dfrac{\pi }{{18}} in the expression.
f(π18)=sec(3×π18)f\left( {\dfrac{\pi }{{18}}} \right) = \sec \left( {3 \times \dfrac{\pi }{{18}}} \right)
Simplify the result.
The exact value of sec(π6)\sec \left( {\dfrac{\pi }{6}} \right) is 23\dfrac{2}{{\sqrt 3 }}.
f(π18)=23f\left( {\dfrac{\pi }{{18}}} \right) = \dfrac{2}{{\sqrt 3 }}
The final answer is 23\dfrac{2}{{\sqrt 3 }}.
Find the point at θ=π9\theta = \dfrac{\pi }{9}.
Replace the variable θ\theta with π9\dfrac{\pi }{9} in the expression.
f(π9)=sec(3×π9)f\left( {\dfrac{\pi }{9}} \right) = \sec \left( {3 \times \dfrac{\pi }{9}} \right)
Simplify the result.
The exact value of sec(π3)\sec \left( {\dfrac{\pi }{3}} \right) is 22.
f(π9)=2f\left( {\dfrac{\pi }{9}} \right) = 2
The final answer is 22.
Find the point at θ=π3\theta = \dfrac{\pi }{3}.
Replace the variable θ\theta with π3\dfrac{\pi }{3} in the expression.
f(π3)=sec(3×π3)f\left( {\dfrac{\pi }{3}} \right) = \sec \left( {3 \times \dfrac{\pi }{3}} \right)
Simplify the result.
The exact value of sec(π)\sec \left( \pi \right) is 1 - 1.
f(π3)=1f\left( {\dfrac{\pi }{3}} \right) = - 1
The final answer is 1 - 1.
Find the point at θ=2π3\theta = \dfrac{{2\pi }}{3}.
Replace the variable θ\theta with 2π3\dfrac{{2\pi }}{3} in the expression.
f(2π3)=sec(3×2π3)f\left( {\dfrac{{2\pi }}{3}} \right) = \sec \left( {3 \times \dfrac{{2\pi }}{3}} \right)
Simplify the result.
The exact value of sec(2π)\sec \left( {2\pi } \right) is 11.
f(2π3)=1f\left( {\dfrac{{2\pi }}{3}} \right) = 1
The final answer is 11.
List the points in a table.

xxf(x)f\left( x \right)
0011
π18\dfrac{\pi }{{18}}23\dfrac{2}{{\sqrt 3 }}
π9\dfrac{\pi }{9}1 - 1
π3\dfrac{\pi }{3}12 - \dfrac{1}{2}
2π3\dfrac{{2\pi }}{3}11

The trigonometric function can be graphed using the amplitude, period, phase shift, vertical shift and the points.
Amplitude: None
Period: 2π3\dfrac{{2\pi }}{3}
Phase Shift: 00(00 to the right)
Vertical Shift: 00

xxf(x)f\left( x \right)
0011
π18\dfrac{\pi }{{18}}23\dfrac{2}{{\sqrt 3 }}
π9\dfrac{\pi }{9}1 - 1
π3\dfrac{\pi }{3}12 - \dfrac{1}{2}
2π3\dfrac{{2\pi }}{3}11

Note: sec3θ\sec 3\theta and 3secθ3\sec \theta are entirely different terms.
3secθ3\sec \theta is thrice the secant of angle θ\theta . It lies between 2 - 2 and 22.
sec3θ\sec 3\theta is the cosine of angle 3θ3\theta . It is three times the angle θ\theta . The value of sec3θ\sec 3\theta is between 1 - 1 and 11.