Solveeit Logo

Question

Question: How do you find the 6 trigonometric functions for \(-\dfrac{\pi }{2}\)?...

How do you find the 6 trigonometric functions for π2-\dfrac{\pi }{2}?

Explanation

Solution

In trigonometry, the six basic trigonometric functions that are widely used are sinθ,cosθ,tanθ,cotθ,secθ,cosecθ\sin \theta ,\cos \theta ,\tan \theta ,\cot \theta ,\sec \theta ,\cos ec\theta . We need to substitute the value of π2-\dfrac{\pi }{2} in place in θ\theta to get the required result.

Complete step by step answer:
The six trigonometric functions are sinθ,cosθ,tanθ,cotθ,secθ,cosecθ\sin \theta ,\cos \theta ,\tan \theta ,\cot \theta ,\sec \theta ,\cos ec\theta .
For the sinθ\sin \theta function,
sine is the trigonometric function of any specified angle that is used in the context of a right angle.
It is usually defined as the ratio of the length of the side opposite to an angle θ\theta to the length of the hypotenuse of the right-angle triangle denoted bysinθ\sin \theta .
According to the question,
θ=π2\Rightarrow \theta =-\dfrac{\pi }{2}
So, we need to find the value of sin(π2)\sin \left( -\dfrac{\pi }{2} \right)
We know that sin(θ)=sinθ\sin \left( -\theta \right)=-\sin \theta
Substituting the same,
We get,
sin(π2)=sin(π2)\Rightarrow \sin \left( -\dfrac{\pi }{2} \right)=-\sin \left( \dfrac{\pi }{2} \right)
sin(π2)=1\Rightarrow -\sin \left( \dfrac{\pi }{2} \right)=-1
For the cosθ\cos \theta function,
cosine is the trigonometric function of any specified angle that is used in the context of a right angle.
It is usually defined as the ratio of the length of the side adjacent to an angle θ\theta to the length of the hypotenuse of the right-angle triangle denoted by cosθ\cos \theta .
According to the question,
θ=π2\Rightarrow \theta =-\dfrac{\pi }{2}
So, we need to find the value of cos(π2)\cos \left( -\dfrac{\pi }{2} \right)
We know that cos(θ)=cosθ\cos \left( -\theta \right)=\cos \theta
Substituting the same,
We get,
cos(π2)=cos(π2)\Rightarrow \cos \left( -\dfrac{\pi }{2} \right)=\cos \left( \dfrac{\pi }{2} \right)
cos(π2)=0\Rightarrow \cos \left( \dfrac{\pi }{2} \right)=0
For the tanθ\tan \theta function,
Tangent is the trigonometric function of any specified angle that is used in the context of a right angle.
It is usually defined as the ratio of the length of the side opposite to an angle θ\theta to the length of the side adjacent to an angle θ\theta of the right-angle triangle denoted bytanθ\tan \theta .
According to the question,
θ=π2\Rightarrow \theta =-\dfrac{\pi }{2}
So, we need to find the value of tan(π2)\tan \left( -\dfrac{\pi }{2} \right)
We know that tan(θ)=tanθ\tan \left( -\theta \right)=-\tan \theta
Substituting the same,
We get,
tan(π2)=tan(π2)\Rightarrow \tan \left( -\dfrac{\pi }{2} \right)=-\tan \left( \dfrac{\pi }{2} \right)
tan(π2)=\Rightarrow -\tan \left( \dfrac{\pi }{2} \right)=-\infty
For the cotθ\cot \theta function,
The reciprocal of tangent function is cotangent function.
cotθ=1tanθ\Rightarrow \cot \theta =\dfrac{1}{\tan \theta }
According to the question,
θ=π2\Rightarrow \theta =-\dfrac{\pi }{2}
cot(π2)=1tan(π2)\Rightarrow \cot \left( -\dfrac{\pi }{2} \right)=\dfrac{1}{\tan \left( -\dfrac{\pi }{2} \right)}
From the above,
tan(π2)=\Rightarrow \tan \left( -\dfrac{\pi }{2} \right)=-\infty
Substituting the same,
We get,
cot(π2)=1\Rightarrow \cot \left( -\dfrac{\pi }{2} \right)=\dfrac{1}{-\infty }
cot(π2)=0\Rightarrow \cot \left( -\dfrac{\pi }{2} \right)=0
For the cosecθ\cos ec\theta function,
The reciprocal of sine function is the cosecant function.
cosecθ=1sinθ\Rightarrow \cos ec\theta =\dfrac{1}{\sin \theta }
According to the question,
θ=π2\Rightarrow \theta =-\dfrac{\pi }{2}
cosec(π2)=1sin(π2)\Rightarrow \cos ec\left( -\dfrac{\pi }{2} \right)=\dfrac{1}{\sin \left( -\dfrac{\pi }{2} \right)}
From the above,
sin(π2)=1\Rightarrow \sin \left( -\dfrac{\pi }{2} \right)=-1
Substituting the same,
We get,
cosec(π2)=11\Rightarrow \cos ec\left( -\dfrac{\pi }{2} \right)=\dfrac{1}{-1}
cosec(π2)=1\Rightarrow \cos ec\left( -\dfrac{\pi }{2} \right)=-1
For the secθ\sec \theta function,
The reciprocal of cosine function is the secant function.
secθ=1cosθ\Rightarrow \sec \theta =\dfrac{1}{\cos \theta }
According to the question,
θ=π2\Rightarrow \theta =-\dfrac{\pi }{2}
sec(π2)=1cos(π2)\Rightarrow \sec \left( -\dfrac{\pi }{2} \right)=\dfrac{1}{\cos \left( -\dfrac{\pi }{2} \right)}
From the above,
cos(π2)=0\Rightarrow \cos \left( -\dfrac{\pi }{2} \right)=0
Substituting the same,
We get,
sec(π2)=10\Rightarrow \sec \left( -\dfrac{\pi }{2} \right)=\dfrac{1}{0}
sec(π2)=\Rightarrow \sec \left( -\dfrac{\pi }{2} \right)=\infty

Note: We need to know the trigonometric ratios of (θ)\left( -\theta \right)to solve the question easily. The relation between the trigonometric functions such as cotangent, tangent and sine, cosecant helps us to solve the problem in less time.