Solveeit Logo

Question

Question: How do you find the \(6\) trigonometric functions for \(\dfrac{{16\pi }}{3}\)?...

How do you find the 66 trigonometric functions for 16π3\dfrac{{16\pi }}{3}?

Explanation

Solution

In order to find the trigonometric functions for the given angle, if the angle is not one of the standard values we remember from the trigonometric table, we split the angle into two standard angles whose tangent value we know, such that the sum or difference of two angles results in the given angle.

Complete step-by-step solution:
Here, we need to find the 66 trigonometric functions, which are, sin\sin , cos\cos , tan\tan , cot\cot , sec\sec and cosec\cos ec . Now we will find the all trigonometric functions for the given angle.
Let us take, x=16π3x = \dfrac{{16\pi }}{3}
Now, firstly we find the value of sin\sin function, we have
sinx=sin(16π3)\sin x = \sin \left( {\dfrac{{16\pi }}{3}} \right) , we write it as
=sin(π+15π3)= \sin \left( {\dfrac{{\pi + 15\pi }}{3}} \right)
=sin(π3+15π3)= \sin \left( {\dfrac{\pi }{3} + \dfrac{{15\pi }}{3}} \right) , now we simplify it and write it as
=sin(π3+5π)= \sin \left( {\dfrac{\pi }{3} + 5\pi } \right)
=sin(π3+π)= \sin \left( {\dfrac{\pi }{3} + \pi } \right) , because sin(2n+1)π=sinπ\sin (2n + 1)\pi = \sin \pi , where nn is any integer, therefore we can take 5π5\pi as π\pi
=sin(π+π3)= \sin \left( {\pi + \dfrac{\pi }{3}} \right), as this angle of sine lies in third quadrant, then this expression becomes negative
=sinπ3= - \sin \dfrac{\pi }{3}
The exact value of sinπ3\sin \dfrac{\pi }{3} is 32\dfrac{{\sqrt 3 }}{2}. Therefore, we get
=sinπ3=32= - \sin \dfrac{\pi }{3} = - \dfrac{{\sqrt 3 }}{2}
sin16π3=32\sin \dfrac{{16\pi }}{3} = - \dfrac{{\sqrt 3 }}{2} .
Similarly, we can find the other 55 trigonometric functions. So, now we have
cosx=cos(16π3)\cos x = \cos \left( {\dfrac{{16\pi }}{3}} \right)
=cos(π+15π3)= \cos \left( {\dfrac{{\pi + 15\pi }}{3}} \right) , we can also write it as
=cos(π3+15π3)= \cos \left( {\dfrac{\pi }{3} + \dfrac{{15\pi }}{3}} \right)
=cos(π3+5π)= \cos \left( {\dfrac{\pi }{3} + 5\pi } \right) , because cos(2n+1)π=cosπ\cos (2n + 1)\pi = \cos \pi , where nn is any integer, therefore we can take 5π5\pi as π\pi
=cos(π3+π)= \cos \left( {\dfrac{\pi }{3} + \pi } \right) , again this angle is negative in third quadrant, then we have
=cosπ3= - \cos \dfrac{\pi }{3}
Now, the exact value of cosπ3\cos \dfrac{\pi }{3} is 12\dfrac{1}{2} . Therefore, we get
=cosπ3=12= - \cos \dfrac{\pi }{3} = - \dfrac{1}{2}
cos16π3=12\cos \dfrac{{16\pi }}{3} = - \dfrac{1}{2} .
Now, we need to find the value of tanx\tan x ,
We know that, tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}
By substituting the values of sinx\sin x and cosx\cos x , we get
=3212= \dfrac{{\dfrac{{ - \sqrt 3 }}{2}}}{{\dfrac{{ - 1}}{2}}}
=32×21= \dfrac{{ - \sqrt 3 }}{2} \times \dfrac{{ - 2}}{1} , we do the reciprocal of the denominator, and after simplifying, we get
=3= \sqrt 3
tan16π3=3\tan \dfrac{{16\pi }}{3} = \sqrt 3
Now, we know that cotx=1tanx\cot x = \dfrac{1}{{\tan x}} , so we get
=cotx=13= \cot x = \dfrac{1}{{\sqrt 3 }}
cot16π3=13\cot \dfrac{{16\pi }}{3} = \dfrac{1}{{\sqrt 3 }} .
Similarly, we know that secx=1cosx\sec x = \dfrac{1}{{\cos x}} , so we get
=secx=112= \sec x = \dfrac{1}{{\dfrac{{ - 1}}{2}}}
secx=2\Rightarrow \sec x = - 2 , so we get
sec16π3=2\sec \dfrac{{16\pi }}{3} = - 2 .
Now, we know that, cosecx=1sinx\cos ecx = \dfrac{1}{{\sin x}} , so we get
cosecx=132\cos ecx = \dfrac{1}{{\dfrac{{ - \sqrt 3 }}{2}}}
cosecx=23\Rightarrow \cos ecx = \dfrac{{ - 2}}{{\sqrt 3 }} so we get
cosec16π3=23\cos ec\dfrac{{16\pi }}{3} = \dfrac{{ - 2}}{{\sqrt 3 }} .
Hence, these are the required values of the 66 trigonometric functions.

Note: The value of angle we evaluate here for all the trigonometric functions is in the radian measure. And, in order to find the exact value of all the trigonometric ratios we split the given angle in the two standard angles and then evaluated the values.