Solveeit Logo

Question

Question: How do you find \(\sin \left( \dfrac{\pi }{12} \right)\) and \(\cos \left( \dfrac{\pi }{12} \right)\...

How do you find sin(π12)\sin \left( \dfrac{\pi }{12} \right) and cos(π12)\cos \left( \dfrac{\pi }{12} \right)?

Explanation

Solution

We have been given two trigonometric functions sine of π12\dfrac{\pi }{12} and cosine of π12\dfrac{\pi }{12} whose values are to be calculated. Thus, we shall assume these trigonometric functions as two separate variables, x and y, in order to simplify the equations for further calculations while using the trigonometric properties. Then, we shall simultaneously solve the formed equations to find the variables, x and y, and correspondingly the trigonometric functions.

Complete step by step solution:
Given sin(π12)\sin \left( \dfrac{\pi }{12} \right) and cos(π12)\cos \left( \dfrac{\pi }{12} \right).
We know that the angle π12\dfrac{\pi }{12} occurs in the first quadrant and the sine as well as the cosine functions both are positive in the first quadrant. Thus, we can simplify assuming these trigonometric functions as two separate positive variables.
Let x=sin(π12)x=\sin \left( \dfrac{\pi }{12} \right) and let y=cos(π12)y=\cos \left( \dfrac{\pi }{12} \right), where xx and yyare two positive variables.
From the basic properties of trigonometric functions, we know that sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1.sin2π12+cos2π12=1\Rightarrow {{\sin }^{2}}\dfrac{\pi }{12}+{{\cos }^{2}}\dfrac{\pi }{12}=1
x2+y2=1\Rightarrow {{x}^{2}}+{{y}^{2}}=1 ……………….. (1)
According to the formula for sine of a double angle, sin2θ=2sinθ.cosθ\sin 2\theta =2\sin \theta .\cos \theta .
We can also write sin(π6)\sin \left( \dfrac{\pi }{6} \right) as sin(2.π12)\sin \left( 2.\dfrac{\pi }{12} \right).
sin(2.π12)=2sin(π12).cos(π12)\Rightarrow \sin \left( 2.\dfrac{\pi }{12} \right)=2\sin \left( \dfrac{\pi }{12} \right).\cos \left( \dfrac{\pi }{12} \right)
sin(π6)=2sin(π12).cos(π12)\Rightarrow \sin \left( \dfrac{\pi }{6} \right)=2\sin \left( \dfrac{\pi }{12} \right).\cos \left( \dfrac{\pi }{12} \right)
Applying the value of sinπ6=12\sin \dfrac{\pi }{6}=\dfrac{1}{2} as well as substituting the values of the assumed variables x and y, we get
12=2xy\Rightarrow \dfrac{1}{2}=2xy
2xy=12\Rightarrow 2xy=\dfrac{1}{2} ………………. (2)
Now, we shall add equations (1) and (2).
x2+y2+2xy=1+12\Rightarrow {{x}^{2}}+{{y}^{2}}+2xy=1+\dfrac{1}{2}
x2+y2+2xy=32\Rightarrow {{x}^{2}}+{{y}^{2}}+2xy=\dfrac{3}{2}
Here, we will apply the algebraic property of square of sum of two terms, (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab where a=xa=x and b=yb=y.
(x+y)2=32\Rightarrow {{\left( x+y \right)}^{2}}=\dfrac{3}{2}
Square rooting both sides, we get
(x+y)2=32\Rightarrow \sqrt{{{\left( x+y \right)}^{2}}}=\sqrt{\dfrac{3}{2}}
x+y=62\Rightarrow x+y=\dfrac{\sqrt{6}}{2} …………………… (3)
Now, we shall subtract equation (2) from equation (1).
x2+y22xy=112\Rightarrow {{x}^{2}}+{{y}^{2}}-2xy=1-\dfrac{1}{2}
x2+y22xy=12\Rightarrow {{x}^{2}}+{{y}^{2}}-2xy=\dfrac{1}{2}
Here, we will apply the algebraic property of square of difference of two terms, (ab)2=a2+b22ab{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab where a=ya=y and b=xb=x.
(yx)2=12\Rightarrow {{\left( y-x \right)}^{2}}=\dfrac{1}{2}
We shall understand that y>xy>xfor angle π12\dfrac{\pi }{12}. This is because sine function is an increasing function from 0 to π12\dfrac{\pi }{12} whereas cosine function is a decreasing function from 0 to π12\dfrac{\pi }{12}. These functions meet at angle π4\dfrac{\pi }{4}. Therefore, at π12\dfrac{\pi }{12}, cosine function is greater than sine function.
Square rooting both sides, we get
(yx)2=12\Rightarrow \sqrt{{{\left( y-x \right)}^{2}}}=\sqrt{\dfrac{1}{2}}
yx=22\Rightarrow y-x=\dfrac{\sqrt{2}}{2} …………………… (4)
Further, we shall add equations (3) and (4) to find the value of variable-y.
x+y+yx=62+22\Rightarrow x+y+y-x=\dfrac{\sqrt{6}}{2}+\dfrac{\sqrt{2}}{2}
2y=6+22\Rightarrow 2y=\dfrac{\sqrt{6}+\sqrt{2}}{2}
Dividing both sides of equation by 2, we get
y=6+24\Rightarrow y=\dfrac{\sqrt{6}+\sqrt{2}}{4}
Now, we shall subtract equations (3) and (4) to find the value of variable-y.
x+y(yx)=6222\Rightarrow x+y-\left( y-x \right)=\dfrac{\sqrt{6}}{2}-\dfrac{\sqrt{2}}{2}
x+yy+x=622\Rightarrow x+y-y+x=\dfrac{\sqrt{6}-\sqrt{2}}{2}
2x=622\Rightarrow 2x=\dfrac{\sqrt{6}-\sqrt{2}}{2}
Dividing both sides of equation by 2, we get
x=624\Rightarrow x=\dfrac{\sqrt{6}-\sqrt{2}}{4}
Therefore, sin(π12)=624\sin \left( \dfrac{\pi }{12} \right)=\dfrac{\sqrt{6}-\sqrt{2}}{4} and cos(π12)=6+24\cos \left( \dfrac{\pi }{12} \right)=\dfrac{\sqrt{6}+\sqrt{2}}{4}.

Note:
Another method of solving this problem and finding the values of sin(π12)\sin \left( \dfrac{\pi }{12} \right) and cos(π12)\cos \left( \dfrac{\pi }{12} \right) is by using the half angle formulae of cosine function and sine function, sin(θ2)=±1cosθ2\sin \left( \dfrac{\theta }{2} \right)=\pm \sqrt{\dfrac{1-\cos \theta }{2}} and cos(θ2)=±1+cosθ2\cos \left( \dfrac{\theta }{2} \right)=\pm \sqrt{\dfrac{1+\cos \theta }{2}}. These formulae relate an angle to the half of that angle. We can use them because we know the values of sin(π6)\sin \left( \dfrac{\pi }{6} \right) and cos(π6)\cos \left( \dfrac{\pi }{6} \right).