Solveeit Logo

Question

Question: How do you find rectangular coordinates for the point with polar coordinates \( \left( {4,\dfrac{{4\...

How do you find rectangular coordinates for the point with polar coordinates (4,4π3)\left( {4,\dfrac{{4\pi }}{3}} \right) ?

Explanation

Solution

Hint : In order to find the rectangular coordinates (x,y)\left( {x,y} \right) ,use the transformation
x=rcosθ y=rsinθ   x = r\cos \theta \\\ y = r\sin \theta \;
where r is equal to 4 and θ\theta is equal to 4π3\dfrac{{4\pi }}{3} to get the rectangular coordinates (x,y)\left( {x,y} \right)

Complete step-by-step answer :
There are two ways to determine a point on a plane, one is by the rectangular coordinates and another is by the Polar Coordinates.
Polar Coordinates (p,θ)(p,\theta ) is actually a 2D coordinate system in which every point on the plane is found by a distance pp from a reference point and an angle i.e. θ\theta from a reference direction.
where pp is the radial coordinate and θ\theta is known as the angular coordinate.
We are given a polar coordinate (4,4π3)\left( {4,\dfrac{{4\pi }}{3}} \right)
Radial coordinate = p/r=4p\,/\,r = 4
Angular coordinate =θ=4π3= \theta = \dfrac{{4\pi }}{3}
Now to transformation by which we can find our rectangular coordinates (x,y)\left( {x,y} \right) is
x=rcosθ y=rsinθ   x = r\cos \theta \\\ y = r\sin \theta \;
In our case r=4andθ=4π3r = 4\,and\,\theta = \dfrac{{4\pi }}{3}
x=4cos(4π3) =4cos(π+π3)   x = 4\cos \left( {\dfrac{{4\pi }}{3}} \right) \\\ = 4\cos \left( {\pi + \dfrac{\pi }{3}} \right) \;
Using Allied angle in trigonometry cos(π+θ)=cosθ\cos \left( {\pi + \theta } \right) = - \cos \theta
=4cos(π3) =4(12) =2   = - 4\cos \left( {\dfrac{\pi }{3}} \right) \\\ = - 4\left( {\dfrac{1}{2}} \right) \\\ = - 2 \; using trigonometric value of cos(π3)=12\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}

y=4sin(4π3) =4sin(π+π3)   y = 4\sin \left( {\dfrac{{4\pi }}{3}} \right) \\\ = 4\sin \left( {\pi + \dfrac{\pi }{3}} \right) \;
Using Allied angle in trigonometry sin(π+θ)=sinθ\sin \left( {\pi + \theta } \right) = - \sin \theta
=4sin(π3) =4(32) =23   = - 4\sin \left( {\dfrac{\pi }{3}} \right) \\\ = - 4\left( {\dfrac{{\sqrt 3 }}{2}} \right) \\\ = - 2\sqrt 3 \; using trigonometric value of sin(π3)=32\sin \left( {\dfrac{\pi }{3}} \right) = \dfrac{{\sqrt 3 }}{2}
Therefore, polar coordinates (4,4π3)\left( {4,\dfrac{{4\pi }}{3}} \right) in rectangular coordinates are (2,23)\left( { - 2, - 2\sqrt 3 } \right) .
So, the correct answer is “ (2,23)\left( { - 2, - 2\sqrt 3 } \right)”.

Note : A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a set of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in the same unit of length.