Solveeit Logo

Question

Question: How do you find \(\left( fg \right)\left( 5 \right)+f\left( 4 \right)\) when \(f\left( x \right)={{x...

How do you find (fg)(5)+f(4)\left( fg \right)\left( 5 \right)+f\left( 4 \right) when f(x)=x2+1f\left( x \right)={{x}^{2}}+1 and g(x)=x4g\left( x \right)=x-4?

Explanation

Solution

In this problem we need to calculate the value of the given expression by using the definition of the given functions. In the expression we have two values, first one is fgfg, second one is ff. In the problem we have definitions of ff and gg. From these values we will calculate the value of fgfg. After having the value of fgfg we will use this and calculate the value of the given expression.

Complete step by step answer:
Given function definitions are f(x)=x2+1f\left( x \right)={{x}^{2}}+1, g(x)=x4g\left( x \right)=x-4.
Now the value of the function fgfg will be calculated by multiplying the function ff with gg, then we will get
fg=(x2+1)(x4)\Rightarrow fg=\left( {{x}^{2}}+1 \right)\left( x-4 \right)
Using the distribution law of the multiplication in the above equation, then we will have
fg=x2(x4)+1(x4) fg=x34x2+x4 \begin{aligned} & \Rightarrow fg={{x}^{2}}\left( x-4 \right)+1\left( x-4 \right) \\\ & \Rightarrow fg={{x}^{3}}-4{{x}^{2}}+x-4 \\\ \end{aligned}
Now the value of fg(5)fg\left( 5 \right) can be calculated by substituting x=5x=5 in the above equation, then we will get
fg=534×52+54 fg=1254×25+1 fg=126100 fg=26 \begin{aligned} & \Rightarrow fg={{5}^{3}}-4\times {{5}^{2}}+5-4 \\\ & \Rightarrow fg=125-4\times 25+1 \\\ & \Rightarrow fg=126-100 \\\ & \Rightarrow fg=26 \\\ \end{aligned}
Now the value of f(4)f\left( 4 \right) can be calculated by substituting x=4x=4 in the function value f(x)=x2+1f\left( x \right)={{x}^{2}}+1, then we will have
f(4)=42+1 f(4)=16+1 f(4)=17 \begin{aligned} & \Rightarrow f\left( 4 \right)={{4}^{2}}+1 \\\ & \Rightarrow f\left( 4 \right)=16+1 \\\ & \Rightarrow f\left( 4 \right)=17 \\\ \end{aligned}
In this problem they have asked to calculate the value of (fg)(5)+f(4)\left( fg \right)\left( 5 \right)+f\left( 4 \right). So, the value of (fg)(5)+f(4)\left( fg \right)\left( 5 \right)+f\left( 4 \right) will be
(fg)(5)+f(4)=26+17 (fg)(5)+f(4)=43 \begin{aligned} & \Rightarrow \left( fg \right)\left( 5 \right)+f\left( 4 \right)=26+17 \\\ & \Rightarrow \left( fg \right)\left( 5 \right)+f\left( 4 \right)=43 \\\ \end{aligned}

Note: We can also solve this problem in another method that is without calculating the value of fgfg. We can directly solve the problem by following the below procedure.
(fg)(5)+f(4)=(52+1)(54)+(42+1) (fg)(5)+f(4)=(25+1)(1)+(16+1) (fg)(5)+f(4)=26+17 (fg)(5)+f(4)=43 \begin{aligned} & \Rightarrow \left( fg \right)\left( 5 \right)+f\left( 4 \right)=\left( {{5}^{2}}+1 \right)\left( 5-4 \right)+\left( {{4}^{2}}+1 \right) \\\ & \Rightarrow \left( fg \right)\left( 5 \right)+f\left( 4 \right)=\left( 25+1 \right)\left( 1 \right)+\left( 16+1 \right) \\\ & \Rightarrow \left( fg \right)\left( 5 \right)+f\left( 4 \right)=26+17 \\\ & \Rightarrow \left( fg \right)\left( 5 \right)+f\left( 4 \right)=43 \\\ \end{aligned}
From both the methods we got the same result.