Solveeit Logo

Question

Question: How do you find \[\left[ {f \circ g} \right]\left( 2 \right)\]and\[\left[ {g \circ f} \right]\left( ...

How do you find [fg](2)\left[ {f \circ g} \right]\left( 2 \right)and[gf](2)\left[ {g \circ f} \right]\left( 2 \right)givenf\left( x \right) = 2x - 1,$$$$g\left( x \right) = - 3x?

Explanation

Solution

This question involves the arithmetic operation like addition/ subtraction/ multiplication/ division. We need to know how to find the value of xxfrom the terms[fg](2)\left[ {f \circ g} \right]\left( 2 \right)and[gf](2)\left[ {g \circ f} \right]\left( 2 \right). We need to know the arithmetic functions with the involvement of different signs. Also, we need to know the basic formulae with the involvement off(g(x))f\left( {g\left( x \right)} \right)andg(f(x))g\left( {f\left( x \right)} \right). 39g

Complete step by step solution:
The given question is shown below,
[fg](2)=?(1)\left[ {f \circ g} \right]\left( 2 \right) = ? \to \left( 1 \right)
[gf](2)=?(2)\left[ {g \circ f} \right]\left( 2 \right) = ? \to \left( 2 \right)
f(x)=2x1(3)f\left( x \right) = 2x - 1 \to \left( 3 \right)
g(x)=3x(4)g\left( x \right) = - 3x \to \left( 4 \right)
We know that,
[fg](x)=f(g(x))(5)\left[ {f \circ g} \right]\left( x \right) = f\left( {g\left( x \right)} \right) \to \left( 5 \right)
[gf](x)=g(f(x))(6)\left[ {g \circ f} \right]\left( x \right) = g\left( {f\left( x \right)} \right) \to \left( 6 \right)
By comparing the equation(1)\left( 1 \right)and(5)\left( 5 \right), we getx=2x = 2.
So, the equation(5)\left( 5 \right)becomes,
(5)[fg](x)=f(g(x))\left( 5 \right) \to \left[ {f \circ g} \right]\left( x \right) = f\left( {g\left( x \right)} \right)
Putx=2x = 2, so we get
[fg](2)=f(g(2))(7)\left[ {f \circ g} \right]\left( 2 \right) = f\left( {g\left( 2 \right)} \right) \to \left( 7 \right)
So, we need to find
g(2)=?g\left( 2 \right) = ?
We know that
From (4)g(x)=3x\left( 4 \right) \to g\left( x \right) = - 3x
Putx=2x = 2, so we get
g(2)=3×2=6g\left( 2 \right) = - 3 \times 2 = - 6
So, the equation(7)\left( 7 \right)becomes,
[fg](2)=f(g(2))=f(6)\left[ {f \circ g} \right]\left( 2 \right) = f\left( {g\left( 2 \right)} \right) = f\left( { - 6} \right)
We need to findf(6)=?f\left( { - 6} \right) = ?
We know that,
(3)f(x)=2x1\left( 3 \right) \to f\left( x \right) = 2x - 1
Put x=6x = - 6, so we get

f(6)=(2×6)1 f(6)=121 f(6)13 f\left( { - 6} \right) = \left( {2 \times - 6} \right) - 1 \\\ f\left( { - 6} \right) = - 12 - 1 \\\ f\left( { - 6} \right) - 13 \\\

So, we get
[fg](2)=f(g(2))=f(6)=13(A)\left[ {f \circ g} \right]\left( 2 \right) = f\left( {g\left( 2 \right)} \right) = f\left( { - 6} \right) = - 13 \to \left( A \right)
Next, we need to solve
[gf](x)=g(f(x))\left[ {g \circ f} \right]\left( x \right) = g\left( {f\left( x \right)} \right)
By comparing the equation(2)\left( 2 \right)and(6)\left( 6 \right), we getx=2x = 2
So, the equation(6)\left( 6 \right)becomes,
(6)[gf](x)=g(f(x))\left( 6 \right) \to \left[ {g \circ f} \right]\left( x \right) = g\left( {f\left( x \right)} \right)
Putx=2x = 2
[gf](2)=g(f(2))\left[ {g \circ f} \right]\left( 2 \right) = g\left( {f\left( 2 \right)} \right)
We need to findf(2)=?f\left( 2 \right) = ?
We know that,
f(x)=2x1f\left( x \right) = 2x - 1
Putx=2x = 2
f(2)=(2×2)1f\left( 2 \right) = \left( {2 \times 2} \right) - 1

f(2)=41 f(2)=3 f\left( 2 \right) = 4 - 1 \\\ f\left( 2 \right) = 3 \\\

So, we get
[gf](2)=g(f(2))=g(3)\left[ {g \circ f} \right]\left( 2 \right) = g\left( {f\left( 2 \right)} \right) = g\left( 3 \right)
So, we need to findg(3)=?g\left( 3 \right) = ?
We know that,
g(x)=3xg\left( x \right) = - 3x
Putx=3x = 3
g(3)=3×3g\left( 3 \right) = - 3 \times 3
g(3)=9g\left( 3 \right) = - 9
So, we get
[gf](2)=g(f(2))=g(3)=9\left[ {g \circ f} \right]\left( 2 \right) = g\left( {f\left( 2 \right)} \right) = g\left( 3 \right) = - 9
**So, the final answer is,

\left[ {f \circ g} \right]\left( 2 \right) = - 13 \\\ \left[ {g \circ f} \right]\left( 2 \right) = - 9 \\\ $$** **Note:** This question involves the operation of addition/ subtraction/ multiplication/ division. To solve this type of question we would remember the formula for$$\left[ {f \circ g} \right]\left( x \right)$$and$$\left[ {g \circ f} \right]\left( x \right)$$. Also, we need to remember the following things when multiplying different sign terms, 1) When a negative term is multiplied by a negative term, the final answer will be a positive term. 2) When a positive term is multiplied by a positive term, the final answer will be a positive term. 3) When a negative term is multiplied with a positive term, the final answer will be a negative term.