Solveeit Logo

Question

Question: How do you find \[\int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}=\]?...

How do you find exex+1dx=\int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}=?

Explanation

Solution

This type of question is based on the concept of integration. First we have to simplify the given function by multiplying ex{{e}^{-x}} in both the numerator and denominator. Then, use the power rule anam=an+m{{a}^{n}}{{a}^{m}}={{a}^{n+m}}. Add and subtract ex{{e}^{-x}}in the numerator of the function. Take ex{{e}^{-x}} common from the first two terms of the numerator. Then, using the property a+bc=ac+bc\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}, spilt the function into two parts and cancel the common terms. Integrate the functions separately and find the required answer.

Complete step by step solution:
According to the question, we are asked to find exex+1dx\int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}.
We have been given the function is exex+1\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}. --------(1)
Let us first multiply ex{{e}^{-x}} in both the numerator and denominator.
exex+1=ex×ex(ex+1)ex\Rightarrow \dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-x}}\times {{e}^{-x}}}{\left( {{e}^{x}}+1 \right){{e}^{-x}}}
Using distributive property (a+b)c=ac+bc\left( a+b \right)c=ac+bc in the numerator, we get
exex+1=ex×exex×ex+ex\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-x}}\times {{e}^{-x}}}{{{e}^{x}}\times {{e}^{-x}}+{{e}^{-x}}}
We know that anam=an+m{{a}^{n}}{{a}^{m}}={{a}^{n+m}}. Let us use this property in the numerator and denominator.
exex+1=exxexx+ex\Rightarrow \dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-x-x}}}{{{e}^{x-x}}+{{e}^{-x}}}
On further simplification, we get
exex+1=e2xe0+ex\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-2x}}}{{{e}^{0}}+{{e}^{-x}}}
We know that any term power 0 is 1.
exex+1=e2x1+ex\Rightarrow \dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-2x}}}{1+{{e}^{-x}}}
Now, let is add and subtract ex{{e}^{-x}} in the numerator. We get
exex+1=e2x+exex1+ex\Rightarrow \dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-2x}}+{{e}^{-x}}-{{e}^{-x}}}{1+{{e}^{-x}}}
Take ex{{e}^{-x}} from the first two terms of the numerator. We get
exex+1=ex(ex+1)ex1+ex\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-x}}\left( {{e}^{-x}}+1 \right)-{{e}^{-x}}}{1+{{e}^{-x}}}
Let us now use the property a+bc=ac+bc\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c} to split the function into two parts.
Therefore, we get
exex+1=ex(ex+1)1+exex1+ex\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-x}}\left( {{e}^{-x}}+1 \right)}{1+{{e}^{-x}}}-\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}
exex+1=ex(1+ex)1+exex1+ex\Rightarrow \dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-x}}\left( 1+{{e}^{-x}} \right)}{1+{{e}^{-x}}}-\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}
We find that 1+ex1+{{e}^{-x}} is common in the first part of the RHS. On cancelling 1+ex1+{{e}^{-x}}, we get
exex+1=exex1+ex\Rightarrow \dfrac{{{e}^{-x}}}{{{e}^{x}}+1}={{e}^{-x}}-\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}
Now, let us integrate the functions in two parts.
exex+1dx=[exex1+ex]dx\int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx=\int{\left[ {{e}^{-x}}-\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}} \right]}dx}
Using the subtraction rule of integration (uv)dx=udxvdx\int{\left( u-v \right)dx=\int{udx-\int{vdx}}}, we get
exex+1dx=exdxex1+exdx\int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx=\int{{{e}^{-x}}}dx}-\int{\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}dx} ----------(2)
Let us first solve exdx\int{{{e}^{-x}}}dx.
We know that exdx=ex+c1\int{{{e}^{-x}}}dx=-{{e}^{-x}}+{{c}_{1}}. Therefore, we get
exdx=ex+c1\int{{{e}^{-x}}}dx=-{{e}^{-x}}+{{c}_{1}}
Now, consider ex1+exdx\int{\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}dx}.
Let us assume u=1+exu=1+{{e}^{-x}}.
Differentiate u with respect to x.
dudx=ddx(1+ex)\dfrac{du}{dx}=\dfrac{d}{dx}\left( 1+{{e}^{-x}} \right)
dudx=ddx(1)+ddx(ex)\Rightarrow \dfrac{du}{dx}=\dfrac{d}{dx}\left( 1 \right)+\dfrac{d}{dx}\left( {{e}^{-x}} \right)
We know that differentiation of a constant is zero. Therefore, we get
dudx=ddx(ex)\Rightarrow \dfrac{du}{dx}=\dfrac{d}{dx}\left( {{e}^{-x}} \right)
We know that ddx(ex)=ex\dfrac{d}{dx}\left( {{e}^{-x}} \right)=-{{e}^{-x}}.
Therefore, we get
dudx=ex\dfrac{du}{dx}=-{{e}^{-x}}
du=exdx\therefore du=-{{e}^{-x}}dx
Substituting du in the numerator and u in the denominator, we get
ex1+exdx=1udu\int{\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}dx}=\int{\dfrac{-1}{u}du}
We know that 1xdx=logx+c\int{\dfrac{1}{x}}dx=\log x+c. Using this rule of integration, we get
1udu=logu+c2\int{\dfrac{-1}{u}du}=-\log u+{{c}_{2}}
But we know u=1+exu=1+{{e}^{-x}}. Therefore, we get
ex1+exdx=log(1+ex)+c2\int{\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}dx}=-\log \left( 1+{{e}^{-x}} \right)+{{c}_{2}}
Substitute this value in the equation (2).
We get
exex+1dx=ex+c1[log(1+ex)+c2]\int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}=-{{e}^{-x}}+{{c}_{1}}-\left[ -\log \left( 1+{{e}^{-x}} \right)+{{c}_{2}} \right]
On taking out the constant, we get
exex+1dx=ex+c1+log(1+ex)c2\Rightarrow \int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}=-{{e}^{-x}}+{{c}_{1}}+\log \left( 1+{{e}^{-x}} \right)-{{c}_{2}}
exex+1dx=ex+log(1+ex)+c1c2\Rightarrow \int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}=-{{e}^{-x}}+\log \left( 1+{{e}^{-x}} \right)+{{c}_{1}}-{{c}_{2}}
Let us assume that c1c2=c{{c}_{1}}-{{c}_{2}}=c.
exex+1dx=ex+log(1+ex)+c\therefore \int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}=-{{e}^{-x}}+\log \left( 1+{{e}^{-x}} \right)+c -----------(3)
But we can write ex=1ex{{e}^{-x}}=\dfrac{1}{{{e}^{x}}}.
Therefore, log(1+ex)=log(1+1ex)\log \left( 1+{{e}^{-x}} \right)=\log \left( 1+\dfrac{1}{{{e}^{x}}} \right).
Let us take LCM. We het
log(1+ex)=log(ex+1ex)\log \left( 1+{{e}^{-x}} \right)=\log \left( \dfrac{{{e}^{x}}+1}{{{e}^{x}}} \right)
Substitute this value in the equation (3).
We get
exex+1dx=ex+log(ex+1ex)+c\int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}=-{{e}^{-x}}+\log \left( \dfrac{{{e}^{x}}+1}{{{e}^{x}}} \right)+c
exex+1dx=log(ex+1ex)ex+c\therefore \int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}=\log \left( \dfrac{{{e}^{x}}+1}{{{e}^{x}}} \right)-{{e}^{-x}}+c

Hence, the integration of exex+1\dfrac{{{e}^{-x}}}{{{e}^{x}}+1} with respect to x is log(ex+1ex)ex+c\log \left( \dfrac{{{e}^{x}}+1}{{{e}^{x}}} \right)-{{e}^{-x}}+c.

Note: Whenever we get this type of question, we have to simplify the given function to a simplified form for easy integration. We have to know that integration of 1x\dfrac{1}{x} is logx. Avoid calculation mistakes based on sign convention. Also be thorough with the rules and properties of logarithm and exponential functions.