Solveeit Logo

Question

Question: How do you find \[\int { - \arctan \left( {\cot x} \right)dx?} \]...

How do you find arctan(cotx)dx?\int { - \arctan \left( {\cot x} \right)dx?}

Explanation

Solution

In this question we have to find the integral of the tan inverse of cotangent of xx . Firstly, we will simplify the expression using inverse trigonometric identity i.e., tan1θ+cot1θ=π2{\tan ^{ - 1}}\theta + {\cot ^{ - 1}}\theta = \dfrac{\pi }{2} . After that we will substitute the value in the given expression and using the formula cot1(cotθ)=θ{\cot ^{ - 1}}\left( {\cot \theta } \right) = \theta we will further simplify the expression and then solve the integral. Hence, we will get the required result.
Formulas used to solve the integral are: -
(1) xn dx=xn+1n+1+c{\int x ^n}{\text{ }}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c where cc is the constant of integration
(2) a dx=ax+c\int a {\text{ }}dx = ax + c where cc is the constant of integration

Complete step by step answer:
We have to find the integral of the tan inverse of cotangent of xx
i.e., tan1(cotx)dx (1)\int { - {{\tan }^{ - 1}}\left( {\cot x} \right)dx} {\text{ }} - - - \left( 1 \right)
Firstly, we will simplify the expression using inverse trigonometric identity
i.e., tan1θ+cot1θ=π2{\tan ^{ - 1}}\theta + {\cot ^{ - 1}}\theta = \dfrac{\pi }{2}
tan1θ=π2cot1θ\Rightarrow {\tan ^{ - 1}}\theta = \dfrac{\pi }{2} - {\cot ^{ - 1}}\theta
Here, in the question θ=cotx\theta = \cot x
Therefore, we get
tan1(cotx)=π2cot1(cotx){\tan ^{ - 1}}\left( {\cot x} \right) = \dfrac{\pi }{2} - {\cot ^{ - 1}}\left( {\cot x} \right)
So, from equation (1)\left( 1 \right) we have
(π2cot1(cotx)) dx (2)\int { - \left( {\dfrac{\pi }{2} - {{\cot }^{ - 1}}\left( {\cot x} \right)} \right)} {\text{ }}dx{\text{ }} - - - \left( 2 \right)
Now, we know that
cot1(cotθ)=θ{\cot ^{ - 1}}\left( {\cot \theta } \right) = \theta
From equation (2)\left( 2 \right)
θ=x\theta = x
Therefore, cot1(cotx)=x(3){\cot ^{ - 1}}\left( {\cot x} \right) = x - - - \left( 3 \right)
Thus, using equation (3)\left( 3 \right) in equation (2)\left( 2 \right) we get
(π2x) dx\int { - \left( {\dfrac{\pi }{2} - x} \right)} {\text{ }}dx
On multiplying with the negative sign, we get
(xπ2) dx (4)\int {\left( {x - \dfrac{\pi }{2}} \right)} {\text{ }}dx{\text{ }} - - - \left( 4 \right)
Now we know that
xn dx=xn+1n+1+c{\int x ^n}{\text{ }}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c
And a dx=ax+c\int a {\text{ }}dx = ax + c
So, from equation (4)\left( 4 \right) we get
(xπ2) dx = x22π2x+c\int {\left( {x - \dfrac{\pi }{2}} \right)} {\text{ }}dx{\text{ = }}\dfrac{{{x^2}}}{{2}} - \dfrac{\pi }{2}x + c

Note:
In an indefinite integral, we will put a constant of integration cc not in a definite integral. Alternatively, we can solve this question by another method i.e.,
We have to find the integral of the tan inverse of cotangent of xx
i.e., tan1(cotx)dx (1)\int { - {{\tan }^{ - 1}}\left( {\cot x} \right)dx} {\text{ }} - - - \left( 1 \right)
Firstly, we will simplify the expression using trigonometric identity
i.e., cotx=tan(π2x)\cot x = \tan \left( {\dfrac{\pi }{2} - x} \right)
therefore, from the equation (1)\left( 1 \right) we have
tan1(tan(π2x))dx (2)\int { - {{\tan }^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{2} - x} \right)} \right)dx} {\text{ }} - - - \left( 2 \right)
Now we know that
tan1(tanθ)=θ{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta
Here, θ=π2x\theta = \dfrac{\pi }{2} - x
tan1(tan(π2x))=π2x\Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{2} - x} \right)} \right) = \dfrac{\pi }{2} - x
Therefore, from the equation (2)\left( 2 \right) we have
(π2x)dx (3)\int { - \left( {\dfrac{\pi }{2} - x} \right)dx} {\text{ }} - - - \left( 3 \right)
On multiplying with the negative sign, we get
(xπ2) dx (4)\int {\left( {x - \dfrac{\pi }{2}} \right)} {\text{ }}dx{\text{ }} - - - \left( 4 \right)
Now we know that
xn dx=xn+1n+1+c{\int x ^n}{\text{ }}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c
And a dx=ax+c\int a {\text{ }}dx = ax + c
So, from equation (4)\left( 4 \right) we get
(xπ2) dx = x22π2x+c\int {\left( {x - \dfrac{\pi }{2}} \right)} {\text{ }}dx{\text{ = }}\dfrac{{{x^2}}}{{2}} - \dfrac{\pi }{2}x + c