Solveeit Logo

Question

Question: How do you find \(f'\left( x \right)\) and \(f''\left( x \right)\) given \(f\left( x \right)={{x}^{4...

How do you find f(x)f'\left( x \right) and f(x)f''\left( x \right) given f(x)=x4exf\left( x \right)={{x}^{4}}{{e}^{x}}

Explanation

Solution

First of all we have to calculate f(x)f'\left( x \right), which is a first order derivative. To find the value of f(x)f'\left( x \right) we will use the product rule of differentiation which is given by
ddx[f(x)g(x)]=f(x)ddxg(x)+g(x)ddxf(x)\dfrac{d}{dx}\left[ f(x)g(x) \right]=f(x)\dfrac{d}{dx}g(x)+g(x)\dfrac{d}{dx}f(x)
Then to calculate f(x)f''\left( x \right) we will differentiate the obtained value of f(x)f'\left( x \right) by using the same product rule.

Complete step by step answer:
We have been given that f(x)=x4exf\left( x \right)={{x}^{4}}{{e}^{x}}
We have to find the values of f(x)f'\left( x \right) and f(x)f''\left( x \right).
Now, the given function f(x)=x4exf\left( x \right)={{x}^{4}}{{e}^{x}} is the product of two functions and we have to find the derivative.
So we know that product rule to find the derivative of two functions is given by ddx[f(x)g(x)]=f(x)ddxg(x)+g(x)ddxf(x)\dfrac{d}{dx}\left[ f(x)g(x) \right]=f(x)\dfrac{d}{dx}g(x)+g(x)\dfrac{d}{dx}f(x)
Now, we have f(x)=x4f(x)={{x}^{4}} and g(x)=exg(x)={{e}^{x}}
Substituting the values in the above formula we get
ddx[x4ex]=x4ddxex+exddxx4\Rightarrow \dfrac{d}{dx}\left[ {{x}^{4}}{{e}^{x}} \right]={{x}^{4}}\dfrac{d}{dx}{{e}^{x}}+{{e}^{x}}\dfrac{d}{dx}{{x}^{4}}
Now, we know that by chain rule ddxex=exddxx\dfrac{d}{dx}{{e}^{x}}={{e}^{x}}\dfrac{d}{dx}x
Substituting the values in the above equation we get
ddx[x4ex]=x4exddxx+exddxx4\Rightarrow \dfrac{d}{dx}\left[ {{x}^{4}}{{e}^{x}} \right]={{x}^{4}}{{e}^{x}}\dfrac{d}{dx}x+{{e}^{x}}\dfrac{d}{dx}{{x}^{4}}
Now, we know that ddxxn=n×xn1\dfrac{d}{dx}{{x}^{n}}=n\times {{x}^{n-1}}
Substituting the values we get
ddx[x4ex]=x4ex+ex4x41\Rightarrow \dfrac{d}{dx}\left[ {{x}^{4}}{{e}^{x}} \right]={{x}^{4}}{{e}^{x}}+{{e}^{x}}4{{x}^{4-1}}
Now, solving further we get
ddx[x4ex]=x4ex+4exx3\Rightarrow \dfrac{d}{dx}\left[ {{x}^{4}}{{e}^{x}} \right]={{x}^{4}}{{e}^{x}}+4{{e}^{x}}{{x}^{3}}
Hence we get the value of f(x)=x4ex+4exx3f'\left( x \right)={{x}^{4}}{{e}^{x}}+4{{e}^{x}}{{x}^{3}}
Now, to find the f(x)f''\left( x \right) we need to differentiate the obtained function again.
We have f(x)=x4ex+4exx3f'\left( x \right)={{x}^{4}}{{e}^{x}}+4{{e}^{x}}{{x}^{3}}
Now, differentiating the above equation with respect to x we get
f(x)=ddxx4ex+ddx4exx3\Rightarrow f''\left( x \right)=\dfrac{d}{dx}{{x}^{4}}{{e}^{x}}+\dfrac{d}{dx}4{{e}^{x}}{{x}^{3}}
Now, we know that ddx[f(x)g(x)]=f(x)ddxg(x)+g(x)ddxf(x)\dfrac{d}{dx}\left[ f(x)g(x) \right]=f(x)\dfrac{d}{dx}g(x)+g(x)\dfrac{d}{dx}f(x)
Substituting the values we get
f(x)=exddxx4+x4ddxex+4[x3ddxex+exddxx3]\Rightarrow f''\left( x \right)={{e}^{x}}\dfrac{d}{dx}{{x}^{4}}+{{x}^{4}}\dfrac{d}{dx}{{e}^{x}}+4\left[ {{x}^{3}}\dfrac{d}{dx}{{e}^{x}}+{{e}^{x}}\dfrac{d}{dx}{{x}^{3}} \right]
Now, we know that by chain rule ddxex=exddxx\dfrac{d}{dx}{{e}^{x}}={{e}^{x}}\dfrac{d}{dx}x
Substituting the values we get
f(x)=exddxx4+x4ex+4[x3ex+exddxx3]\Rightarrow f''\left( x \right)={{e}^{x}}\dfrac{d}{dx}{{x}^{4}}+{{x}^{4}}{{e}^{x}}+4\left[ {{x}^{3}}{{e}^{x}}+{{e}^{x}}\dfrac{d}{dx}{{x}^{3}} \right]
Now, we know that ddxxn=n×xn1\dfrac{d}{dx}{{x}^{n}}=n\times {{x}^{n-1}}
Substituting the values we get
f(x)=4exx41+x4ex+4[x3ex+3exx31]\Rightarrow f''\left( x \right)=4{{e}^{x}}{{x}^{4-1}}+{{x}^{4}}{{e}^{x}}+4\left[ {{x}^{3}}{{e}^{x}}+3{{e}^{x}}{{x}^{3-1}} \right]
Now, simplifying further we get

& \Rightarrow f''\left( x \right)=4{{e}^{x}}{{x}^{3}}+{{x}^{4}}{{e}^{x}}+4\left[ {{x}^{3}}{{e}^{x}}+3{{e}^{x}}{{x}^{2}} \right] \\\ & \Rightarrow f''\left( x \right)=4{{e}^{x}}{{x}^{3}}+{{x}^{4}}{{e}^{x}}+4{{x}^{3}}{{e}^{x}}+12{{e}^{x}}{{x}^{2}} \\\ & \Rightarrow f''\left( x \right)={{x}^{4}}{{e}^{x}}+8{{e}^{x}}{{x}^{3}}+12{{e}^{x}}{{x}^{2}} \\\ \end{aligned}$$ Hence we get the values of $f'\left( x \right)$ and $f''\left( x \right)$ as $f'\left( x \right)={{x}^{4}}{{e}^{x}}+4{{e}^{x}}{{x}^{3}}$ and $$f''\left( x \right)={{x}^{4}}{{e}^{x}}+8{{e}^{x}}{{x}^{3}}+12{{e}^{x}}{{x}^{2}}$$ **Note:** Avoid basic calculation mistakes. The point to remember about this question is that product rule and chain rule are different. Chain rule is applied when we have a composite function $f\left[ g(x) \right]$. Product rule is used when we have a product of two functions.