Solveeit Logo

Question

Question: How do you find \[\dfrac{{dy}}{{dx}}\] by implicit differentiation of \[{x^3} - 3{x^2}y + 2x{y^2} = ...

How do you find dydx\dfrac{{dy}}{{dx}} by implicit differentiation of x33x2y+2xy2=10{x^3} - 3{x^2}y + 2x{y^2} = 10 ?

Explanation

Solution

Hint : Derivatives are defined as the varying rate of a function with respect to an independent variable. We know that implicit means some function of y and x equals something else. Knowing ‘x’ does not lead directly to ‘y’. we can solve this using product rule of differentiation, that is by dydx=u×dvdx+v×dudx\dfrac{{dy}}{{dx}} = u \times \dfrac{{dv}}{{dx}} + v \times \dfrac{{du}}{{dx}} .

Complete step-by-step answer :
Given,
x33x2y+2xy2=10{x^3} - 3{x^2}y + 2x{y^2} = 10
Now differentiate the above equation with respect to ‘x’.
ddx(x33x2y+2xy2)=ddx(10)\Rightarrow \dfrac{d}{{dx}}\left( {{x^3} - 3{x^2}y + 2x{y^2}} \right) = \dfrac{d}{{dx}}\left( {10} \right)
By linear combination rule, we have:
d(x3)dxd(3x2y)dx+d(2xy2)dx=ddx(10)\dfrac{{d({x^3})}}{{dx}} - \dfrac{{d(3{x^2}y)}}{{dx}} + \dfrac{{d(2x{y^2})}}{{dx}} = \dfrac{d}{{dx}}\left( {10} \right)
Differentiation of constant is zero,
d(x3)dxd(3x2y)dx+d(2xy2)dx=0\dfrac{{d({x^3})}}{{dx}} - \dfrac{{d(3{x^2}y)}}{{dx}} + \dfrac{{d(2x{y^2})}}{{dx}} = 0
Applying differentiation for first term we have,
3x2d(3x2y)dx+d(2xy2)dx=03{x^2} - \dfrac{{d(3{x^2}y)}}{{dx}} + \dfrac{{d(2x{y^2})}}{{dx}} = 0
Taking constant outside we have,
3x23d(x2y)dx+2d(xy2)dx=03{x^2} - 3\dfrac{{d({x^2}y)}}{{dx}} + 2\dfrac{{d(x{y^2})}}{{dx}} = 0
Now applying the product rule for the remaining two terms we have,
3x23(x2dydx+y.2x)+2(xd(y2)dx+y2.1)=03{x^2} - 3\left( {{x^2}\dfrac{{dy}}{{dx}} + y.2x} \right) + 2\left( {x\dfrac{{d({y^2})}}{{dx}} + {y^2}.1} \right) = 0
3x23(x2dydx+2xy)+2(x.2ydydx+y2.1)=03{x^2} - 3\left( {{x^2}\dfrac{{dy}}{{dx}} + 2xy} \right) + 2\left( {x.2y\dfrac{{dy}}{{dx}} + {y^2}.1} \right) = 0
3x23(x2dydx+2xy)+2(2xydydx+y2)=03{x^2} - 3\left( {{x^2}\dfrac{{dy}}{{dx}} + 2xy} \right) + 2\left( {2xy\dfrac{{dy}}{{dx}} + {y^2}} \right) = 0
Expanding the brackets we have,
3x23x2dydx6xy+4xydydx+2y2=03{x^2} - 3{x^2}\dfrac{{dy}}{{dx}} - 6xy + 4xy\dfrac{{dy}}{{dx}} + 2{y^2} = 0
3x2dydx+4xydydx=6xy3x22y2- 3{x^2}\dfrac{{dy}}{{dx}} + 4xy\dfrac{{dy}}{{dx}} = 6xy - 3{x^2} - 2{y^2}
Now taking dydx\dfrac{{dy}}{{dx}} common we have,
dydx(3x2+4xy)=6xy3x22y2\dfrac{{dy}}{{dx}}\left( { - 3{x^2} + 4xy} \right) = 6xy - 3{x^2} - 2{y^2}
Now divide the whole differential equation by (3x2+4xy)\left( { - 3{x^2} + 4xy} \right) ,
dydx=6xy3x22y23x2+4xy\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{6xy - 3{x^2} - 2{y^2}}}{{ - 3{x^2} + 4xy}}
So, the correct answer is “ dydx=6xy3x22y23x2+4xy \dfrac{{dy}}{{dx}} = \dfrac{{6xy - 3{x^2} - 2{y^2}}}{{ - 3{x^2} + 4xy}} ”.

Note : \bullet Linear combination rule: The linearity law is very important to emphasize its nature with alternate notation. Symbolically it is specified as h(x)=af(x)+bg(x)h'(x) = af'(x) + bg'(x)
\bullet Quotient rule: The derivative of one function divided by other is found by
We know the differentiation of xn{x^n} with respect to ‘x’ is d(xn)dx=n.xn1\dfrac{{d({x^n})}}{{dx}} = n.{x^{n - 1}} . The obtained result is the first derivative. If we differentiate again we get a second derivative. If we differentiate the second derivative again we get a third derivative and so on. Careful in applying product rules. We also know that differentiation of constant terms is zero.