Solveeit Logo

Question

Question: How do you find \(\cos \left( {{\sin }^{-1}}x-{{\cos }^{-1}}y \right)\)?...

How do you find cos(sin1xcos1y)\cos \left( {{\sin }^{-1}}x-{{\cos }^{-1}}y \right)?

Explanation

Solution

We first assume variables for the given terms sin1x{{\sin }^{-1}}x and cos1y{{\cos }^{-1}}y as a and b respectively. We take the trigonometric ratio of cos on both sides of aba-b. We find both ratio value of cos and sin for the angles a and b. then we use the formula of cos(ab)=cosacosb+sinasinb\cos \left( a-b \right)=\cos a\cos b+\sin a\sin b. At the end we put the values to find the solution.

Complete step by step solution:
Let sin1x=a{{\sin }^{-1}}x=a and cos1y=b{{\cos }^{-1}}y=b. From the inverse law we get sina=x\sin a=x and cosb=y\cos b=y.
Therefore, we need to find the value of sin1xcos1y=ab{{\sin }^{-1}}x-{{\cos }^{-1}}y=a-b.
We need to find the value of cos(sin1xcos1y)\cos \left( {{\sin }^{-1}}x-{{\cos }^{-1}}y \right) equal to cos(ab)\cos \left( a-b \right).
We take the trigonometric ratio of cos on both sides of aba-b.
We now use the theorem of cos(ab)=cosacosb+sinasinb\cos \left( a-b \right)=\cos a\cos b+\sin a\sin b.
From sina=x\sin a=x and cosb=y\cos b=y, we find the values of cosa\cos a and sinb\sin b.
So, we get cosa=1sin2a=1x2\cos a=\sqrt{1-{{\sin }^{2}}a}=\sqrt{1-{{x}^{2}}} and sinb=1cos2b=1y2\sin b=\sqrt{1-{{\cos }^{2}}b}=\sqrt{1-{{y}^{2}}}.
We place the values and get
cos(ab)=cosacosb+sinasinb=y1x2+x1y2\cos \left( a-b \right)=\cos a\cos b+\sin a\sin b=y\sqrt{1-{{x}^{2}}}+x\sqrt{1-{{y}^{2}}}.
Therefore, we get cos(sin1xcos1y)=y1x2+x1y2\cos \left( {{\sin }^{-1}}x-{{\cos }^{-1}}y \right)=y\sqrt{1-{{x}^{2}}}+x\sqrt{1-{{y}^{2}}}.

Note:
We are only taking the positive value for the cosa=1x2\cos a=\sqrt{1-{{x}^{2}}} and sinb=1y2\sin b=\sqrt{1-{{y}^{2}}}. We use them using the formula of sin2α+cos2α=1{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1. Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to π2xπ2-\dfrac{\pi }{2}\le x\le \dfrac{\pi }{2}.