Solveeit Logo

Question

Question: How do you find all the solutions in the interval \([0,2\pi )\) without using a calculator of \(3\si...

How do you find all the solutions in the interval [0,2π)[0,2\pi ) without using a calculator of 3sinx=2cos2x3\sin x = 2{\cos ^2}x ?

Explanation

Solution

Firstly we convert the given equation into a quadratic equation which will be in the form ay2+by+c=0a{y^2} + by + c = 0 where yy will be sinx\sin x . Then we will get the value of sinx\sin x from the quadratic equation and then we will find the value of xx where xx lies in the interval [0,2π)[0,2\pi ) .

Formulas Used:
\Rightarrow cos2x+sin2x=1{\cos ^2}x + {\sin ^2}x = 1
\Rightarrow sinθ=sinz\sin \theta = \sin z
θ=2nπ+z\Rightarrow \theta = 2n\pi + z
where n=0,±1,±2,.....n = 0, \pm 1, \pm 2,.....

Complete step-by-step answer:
\Rightarrow 3sinx=2cos2x3\sin x = 2{\cos ^2}x
As we know that ;
\Rightarrow cos2x+sin2x=1cos2x=1sin2x{\cos ^2}x + {\sin ^2}x = 1 \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x
Applying this in the equation we will get;
\Rightarrow 3sinx=2(1sin2x)3\sin x = 2(1 - {\sin ^2}x)
3sinx=22sin2x\Rightarrow 3\sin x = 2 - 2{\sin ^2}x
Adding both sides 2sin2x2{\sin ^2}x and subtracting 22 from both side we will get;
2sin2x+3sinx2=0\Rightarrow 2{\sin ^2}x + 3\sin x - 2 = 0
3sinx3\sin x can be written as (41)sinx(4 - 1)\sin x.
2sin2x+(41)sinx2=0\Rightarrow 2{\sin ^2}x + (4 - 1)\sin x - 2 = 0
2sin2x+4sinxsinx2=0\Rightarrow 2{\sin ^2}x + 4\sin x - \sin x - 2 = 0
Taking 2sinx2\sin x common from the first two terms and 1 - 1 from the next two terms we will get;
2sinx(sinx+2)(sinx+2)=0\Rightarrow 2\sin x(\sin x + 2) - (\sin x + 2) = 0
(2sinx1)(sinx+2)=0\Rightarrow (2\sin x - 1)(\sin x + 2) = 0
We will obtain two cases from here;
Case 11 :
\Rightarrow 2sinx1=02\sin x - 1 = 0
2sinx=1\Rightarrow 2\sin x = 1
sinx=12\Rightarrow \sin x = \dfrac{1}{2}
Case 22 :
\Rightarrow sinx+2=0\sin x + 2 = 0
sinx=2\Rightarrow \sin x = - 2
In case 22 we can see that sinx=2\sin x = - 2 . But we know that the minimum value of sinx\sin x is 1 - 1 .
So sinx=2\sin x = - 2 is impossible.
From case 11 ;
When xx lies in the interval [0,π2]\left[ {0,\dfrac{\pi }{2}} \right] ;
sinx=12\Rightarrow \sin x = \dfrac{1}{2}
sinx=sinπ6\Rightarrow \sin x = \sin \dfrac{\pi }{6}
Now using the formula;
sinθ=sinz\sin \theta = \sin z
θ=2nπ+z\Rightarrow \theta = 2n\pi + z
where n=0,±1,±2,.......n = 0, \pm 1, \pm 2,.......
x=2nπ+π6\Rightarrow x = 2n\pi + \dfrac{\pi }{6}
Now xx lies in the interval [0,2π)[0,2\pi ) so the only possibility is n=0n = 0 ;
x=π6\therefore x = \dfrac{\pi }{6} .
When xx lies in the interval [π2,π]\left[ {\dfrac{\pi }{2},\pi } \right] ;
sinx=12\Rightarrow \sin x = \dfrac{1}{2}
sinx=sin5π6\Rightarrow \sin x = \sin \dfrac{{5\pi }}{6}
Now using the formula;
\Rightarrow sinθ=sinz\sin \theta = \sin z
θ=2nπ+z\Rightarrow \theta = 2n\pi + z
Where n=0,±1,±2,.......n = 0, \pm 1, \pm 2,.......
x=2nπ+5π6\Rightarrow x = 2n\pi + \dfrac{{5\pi }}{6}
Now xx lies in the interval [0,2π)[0,2\pi ) so the only possibility is n=0n = 0 ;
x=5π6\therefore x = \dfrac{{5\pi }}{6}

So the values of xx are π6\dfrac{\pi }{6} and 5π6\dfrac{{5\pi }}{6}.

Alternative method:
We can also deduce the equation in the form of cosx\cos x by putting sinx=1cos2x\sin x = \sqrt {1 - {{\cos }^2}x} .

Note:
When the interval changes the trigonometric functions like sin\sin , cos\cos , tan\tan etc. changes the values of xx . sin\sin function gives positive values of xx in the intervals [0,π2]\left[ {0,\dfrac{\pi }{2}} \right] and [π2,π]\left[ {\dfrac{\pi }{2},\pi } \right] which are known as the first quadrant and second quadrant respectively. sin\sin gives negative values of xx in the intervals [π,3π2]\left[ {\pi ,\dfrac{{3\pi }}{2}} \right] and [3π2,2π]\left[ {\dfrac{{3\pi }}{2},2\pi } \right] which are known as third and fourth quadrant respectively.