Solveeit Logo

Question

Question: How do you find all solutions (in the range \(0 < x < \pi \)) of the equation \(\cos 2x = \dfrac{{ -...

How do you find all solutions (in the range 0<x<π0 < x < \pi ) of the equation cos2x=32?\cos 2x = \dfrac{{ - \sqrt 3 }}{2}?

Explanation

Solution

First find the general solution of the given trigonometric equation and then shrink that general solution into the given range for the required particular solution.

Complete step by step solution:
Given trigonometric equation cos2x=32\cos 2x = \dfrac{{ - \sqrt 3 }}{2}, we have to find its solution in the range 0<x<π0 < x < \pi
In order to find the solutions for xx in the range 0<x<π0 < x < \pi we will first find the general solution of the equation cos2x=32\cos 2x = \dfrac{{ - \sqrt 3 }}{2}
The principal values for cosθ=32\cos \theta = \dfrac{{ - \sqrt 3 }}{2} are follows
θ=5π6  and  5π6\theta = \dfrac{{ - 5\pi }}{6}\;{\text{and}}\;\dfrac{{5\pi }}{6}
This is the principal solution, to find the general solution we have to add the period of the cosine function which is 2π2\pi
θ=5π6  and  5π6 θ=2nπ5π6  and  2nπ+5π6,  where  nI θ=2nπ±5π6,  where  nI  \Rightarrow \theta = \dfrac{{ - 5\pi }}{6}\;{\text{and}}\;\dfrac{{5\pi }}{6} \\\ \Rightarrow \theta = 2n\pi - \dfrac{{5\pi }}{6}\;{\text{and}}\;2n\pi + \dfrac{{5\pi }}{6},\;{\text{where}}\;n \in I \\\ \Rightarrow \theta = 2n\pi \pm \dfrac{{5\pi }}{6},\;{\text{where}}\;n \in I \\\
So now, for cos2x=32\cos 2x = \dfrac{{ - \sqrt 3 }}{2}, the general solution will be written as
2x=2nπ±5π6,  where  nI x=2nπ±5π62,  where  nI x=nπ±5π12,  where  nI  \Rightarrow 2x = 2n\pi \pm \dfrac{{5\pi }}{6},\;{\text{where}}\;n \in I \\\ \Rightarrow x = \dfrac{{2n\pi \pm \dfrac{{5\pi }}{6}}}{2},\;{\text{where}}\;n \in I \\\ \Rightarrow x = n\pi \pm \dfrac{{5\pi }}{{12}},\;{\text{where}}\;n \in I \\\
So we got the general solution for cos2x=32\cos 2x = \dfrac{{ - \sqrt 3 }}{2}, which is x=nπ±5π12,  where  nIx = n\pi \pm \dfrac{{5\pi }}{{12}},\;{\text{where}}\;n \in I
Now we will choose the value of nn so that the value of xx lies in the range [0,  π]\left[ {0,\;\pi } \right]
For this we will do the following
0<x<π 0<nπ±5π12<π,  where  nI  0 < x < \pi \\\ 0 < n\pi \pm \dfrac{{5\pi }}{{12}} < \pi ,\;{\text{where}}\;n \in I \\\
Now we will take both cases, 5π12  and  5π12\dfrac{{5\pi }}{{12}}\;{\text{and}}\;\dfrac{{ - 5\pi }}{{12}}
For 5π12\dfrac{{5\pi }}{{12}},
0<nπ+5π12<π,  where  nI 05π12<nπ<π5π12,  where  nI \-5π12<nπ<7π12,  where  nI  0 < n\pi + \dfrac{{5\pi }}{{12}} < \pi ,\;{\text{where}}\;n \in I \\\ 0 - \dfrac{{5\pi }}{{12}} < n\pi < \pi - \dfrac{{5\pi }}{{12}},\;{\text{where}}\;n \in I \\\ \- \dfrac{{5\pi }}{{12}} < n\pi < \dfrac{{7\pi }}{{12}},\;{\text{where}}\;n \in I \\\
Dividing π\pi from all, we will get
\-5π12π<nππ<7π12π,  where  nI \-512<n<712,  where  nI  \- \dfrac{{5\pi }}{{12\pi }} < \dfrac{{n\pi }}{\pi } < \dfrac{{7\pi }}{{12\pi }},\;{\text{where}}\;n \in I \\\ \- \dfrac{5}{{12}} < n < \dfrac{7}{{12}},\;{\text{where}}\;n \in I \\\
\therefore we get the value of n=0n = 0 in this case, putting this in the general solution
x=nπ±5π12,  where  nI x=0×π±5π12 x=±5π12  \Rightarrow x = n\pi \pm \dfrac{{5\pi }}{{12}},\;{\text{where}}\;n \in I \\\ \Rightarrow x = 0 \times \pi \pm \dfrac{{5\pi }}{{12}} \\\ \Rightarrow x = \pm \dfrac{{5\pi }}{{12}} \\\
But 5π12 - \dfrac{{5\pi }}{{12}} doesn’t lie in the range [0,  π]\left[ {0,\;\pi } \right]
x=5π12\therefore x = \dfrac{{5\pi }}{{12}} is the solution in this case
For 5π12\dfrac{{ - 5\pi }}{{12}} ,
0<nπ5π12<π,  where  nI 0+5π12<nπ<π+5π12,  where  nI 5π12<nπ<17π12,  where  nI  0 < n\pi - \dfrac{{5\pi }}{{12}} < \pi ,\;{\text{where}}\;n \in I \\\ 0 + \dfrac{{5\pi }}{{12}} < n\pi < \pi + \dfrac{{5\pi }}{{12}},\;{\text{where}}\;n \in I \\\ \dfrac{{5\pi }}{{12}} < n\pi < \dfrac{{17\pi }}{{12}},\;{\text{where}}\;n \in I \\\
Dividing π\pi from all, we will get
5π12<nπ<17π12,  where  nI 5π12π<nππ<17π12π,  where  nI 512<n<1712,  where  nI  \dfrac{{5\pi }}{{12}} < n\pi < \dfrac{{17\pi }}{{12}},\;{\text{where}}\;n \in I \\\ \dfrac{{5\pi }}{{12\pi }} < \dfrac{{n\pi }}{\pi } < \dfrac{{17\pi }}{{12\pi }},\;{\text{where}}\;n \in I \\\ \dfrac{5}{{12}} < n < \dfrac{{17}}{{12}},\;{\text{where}}\;n \in I \\\
\therefore we get the value of n=1n = 1 this time, putting it in general solution
x=nπ±5π12,  where  nI x=1×π±5π12 x=π±5π12 x=π+5π12  and  π5π12 x=17π12  and  7π12  \Rightarrow x = n\pi \pm \dfrac{{5\pi }}{{12}},\;{\text{where}}\;n \in I \\\ \Rightarrow x = 1 \times \pi \pm \dfrac{{5\pi }}{{12}} \\\ \Rightarrow x = \pi \pm \dfrac{{5\pi }}{{12}} \\\ \Rightarrow x = \pi + \dfrac{{5\pi }}{{12}}\;and\;\pi - \dfrac{{5\pi }}{{12}} \\\ \Rightarrow x = \dfrac{{17\pi }}{{12}}\;{\text{and}}\;\dfrac{{7\pi }}{{12}} \\\
Here x=17π12x = \dfrac{{17\pi }}{{12}} is not in the required range
x=7π12\therefore x = \dfrac{{7\pi }}{{12}} is the solution for this case.
That is the overall solution for cos2x=32\cos 2x = \dfrac{{ - \sqrt 3 }}{2} in range [0,  π]\left[ {0,\;\pi } \right] is x=5π12  and  7π12x = \dfrac{{5\pi }}{{12}}\;{\text{and}}\;\dfrac{{7\pi }}{{12}}

Note: The solution in this problem is called the particular solution of the equation in which some particular values come up from the general solution, satisfying all the conditions given in the problem. So read the conditions in the question (if given) and then answer accordingly.