Solveeit Logo

Question

Question: How do you find all real and complex roots of \({x^5} - 32 = 0\) ?...

How do you find all real and complex roots of x532=0{x^5} - 32 = 0 ?

Explanation

Solution

The given question is pretty easy and solvable. Find the real solution first by using logarithm. Then find complex roots by using Euler’s form of complex numbers. So, let’s have a look at the approach.

Complete Step by Step Solution:
Given that
x5=32\Rightarrow {x^5} = 32
Taking logarithm on both sides,
log(x5)=log32\Rightarrow \log \left( {{x^5}} \right) = \log 32
Solving further,
5logx=5log2\Rightarrow 5\log x = 5\log 2
Since logarithm is a one-one function,
Hence x=2x = 2.
We obtained the real solution to the equation.
Euler’s form:
eiθ=cosθ+isinθ\Rightarrow {e^{i\theta }} = \cos \theta + i\sin \theta
As you can clearly see,
ei×2π=1\Rightarrow {e^{i \times 2\pi }} = 1
Because
cos2π=1\cos 2\pi = 1 and sin2π=0\sin 2\pi = 0
In fact this will be true for all multiples of 2π2\pi .
So we can rewrite 1 as,
1=ei×2π=ei×4π=ei×6π=ei×8π\Rightarrow 1 = {e^{i \times 2\pi }} = {e^{i \times 4\pi }} = {e^{i \times 6\pi }} = {e^{i \times 8\pi }}
So coming back to our question,
we can write 32 as
x5=32×1\Rightarrow {x^5} = 32 \times 1
x5=32ei×2π=32ei×4π=32ei×6π=32ei×8π\Rightarrow {x^5} = 32{e^{i \times 2\pi }} = 32{e^{i \times 4\pi }} = 32{e^{i \times 6\pi }} = 32{e^{i \times 8\pi }}
Taking logarithm for all the terms
logx5=log(32ei×2π)=log(32ei×4π)=log(32ei×6π)=log(32ei×8π)\Rightarrow \log {x^5} = \log \left( {32{e^{i \times 2\pi }}} \right) = \log \left( {32{e^{i \times 4\pi }}} \right) = \log \left( {32{e^{i \times 6\pi }}} \right) = \log \left( {32{e^{i \times 8\pi }}} \right)
5logx=5log(2ei×2π5)=5log(2ei×4π5)=5log(2ei×6π5)=5log(2ei×8π5)\Rightarrow 5\log x = 5\log \left( {2{e^{i \times \dfrac{{2\pi }}{5}}}} \right) = 5\log \left( {2{e^{i \times \dfrac{{4\pi }}{5}}}} \right) = 5\log \left( {2{e^{i \times \dfrac{{6\pi }}{5}}}} \right) = 5\log \left( {2{e^{i \times \dfrac{{8\pi }}{5}}}} \right)
Dividing all terms by 5,
logx=log(2ei×2π5)=log(2ei×4π5)=log(2ei×6π5)=log(2ei×8π5)\Rightarrow \log x = \log \left( {2{e^{i \times \dfrac{{2\pi }}{5}}}} \right) = \log \left( {2{e^{i \times \dfrac{{4\pi }}{5}}}} \right) = \log \left( {2{e^{i \times \dfrac{{6\pi }}{5}}}} \right) = \log \left( {2{e^{i \times \dfrac{{8\pi }}{5}}}} \right)
By this equation you can identify the complex roots for x532=0{x^5} - 32 = 0.
We have 4 complex roots here,
x=2ei×2π5\Rightarrow x = 2{e^{i \times \dfrac{{2\pi }}{5}}}
x=2ei×4π5\Rightarrow x = 2{e^{i \times \dfrac{{4\pi }}{5}}}
x=2ei×6π5\Rightarrow x = 2{e^{i \times \dfrac{{6\pi }}{5}}}
x=2ei×8π5\Rightarrow x = 2{e^{i \times \dfrac{{8\pi }}{5}}}
These all are obtained from Euler's form.
You can easily convert them by using
eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta
So,
2ei×2π5=2cos(2π5)+2isin(2π5)\Rightarrow 2{e^{i \times \dfrac{{2\pi }}{5}}} = 2\cos \left( {\dfrac{{2\pi }}{5}} \right) + 2i\sin \left( {\dfrac{{2\pi }}{5}} \right)
Similarly,
2ei×4π5=2cos(4π5)+2isin(4π5)\Rightarrow 2{e^{i \times \dfrac{{4\pi }}{5}}} = 2\cos \left( {\dfrac{{4\pi }}{5}} \right) + 2i\sin \left( {\dfrac{{4\pi }}{5}} \right)
2ei×6π5=2cos(6π5)+2isin(6π5)\Rightarrow 2{e^{i \times \dfrac{{6\pi }}{5}}} = 2\cos \left( {\dfrac{{6\pi }}{5}} \right) + 2i\sin \left( {\dfrac{{6\pi }}{5}} \right)
2ei×8π5=2cos(8π5)+2isin(8π5)\Rightarrow 2{e^{i \times \dfrac{{8\pi }}{5}}} = 2\cos \left( {\dfrac{{8\pi }}{5}} \right) + 2i\sin \left( {\dfrac{{8\pi }}{5}} \right)
We can substitute some trigonometric terms,
sin(2πx)=sinx\because \sin \left( {2\pi - x} \right) = - \sin x
sin6π5=sin4π5\therefore \sin \dfrac{{6\pi }}{5} = - \sin \dfrac{{4\pi }}{5}
and
sin8π5=sin2π5\therefore \sin \dfrac{{8\pi }}{5} = - \sin \dfrac{{2\pi }}{5}
Similarly for cos,
cos(2πx)=cosx\because \cos \left( {2\pi - x} \right) = \cos x
cos6π5=cos4π5\therefore \cos \dfrac{{6\pi }}{5} = \cos \dfrac{{4\pi }}{5}
and
cos8π5=cos2π5\therefore \cos \dfrac{{8\pi }}{5} = \cos \dfrac{{2\pi }}{5}
Substituting according to the trigonometric transformations,
the complex roots will be
x=2cos2π5±2isin2π5\Rightarrow x = 2\cos \dfrac{{2\pi }}{5} \pm 2i\sin \dfrac{{2\pi }}{5} and
x=2cos4π5±2isin4π5\Rightarrow x = 2\cos \dfrac{{4\pi }}{5} \pm 2i\sin \dfrac{{4\pi }}{5}
All the roots of the equation x532=0{x^5} - 32 = 0 are
x=2\Rightarrow x = 2
x=2cos2π5±2isin2π5\Rightarrow x = 2\cos \dfrac{{2\pi }}{5} \pm 2i\sin \dfrac{{2\pi }}{5}

x=2cos4π5±2isin4π5\Rightarrow x = 2\cos \dfrac{{4\pi }}{5} \pm 2i\sin \dfrac{{4\pi }}{5}

Note:
You could have used other multiples of 2π as well, but all that will lead to these answers at the end. Since the equation is of degree 5, so it will have a total of 5 roots including real and complex roots.