Solveeit Logo

Question

Question: How do you find all \(\dfrac{\cos 2x}{\sin 3x-\sin x}\) in the interval \(\left[ 0,2\pi \right)\) ?...

How do you find all cos2xsin3xsinx\dfrac{\cos 2x}{\sin 3x-\sin x} in the interval [0,2π)\left[ 0,2\pi \right) ?

Explanation

Solution

Firstly, we simplify the above trigonometric function, especially the denominator using trigonometric identities and formula. After evaluating we get simpler trigonometric terms for whom we find the solutions in the range [0,2π)\left[ 0,2\pi \right) .

Complete step-by-step solution:
The given trigonometric function is y=cos2xsin3xsinxy=\dfrac{\cos 2x}{\sin 3x-\sin x}
Consider the denominator sin3xsinx\sin 3x-\sin x
We now simplify this using the trigonometric identity which is,
sinAsinB=2cos(A+B2)sin(AB2)\sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)
sin3xsinx=2cos(3x+x2)sin(3xx2)\Rightarrow \sin 3x-\sin x=2\cos \left( \dfrac{3x+x}{2} \right)\sin \left( \dfrac{3x-x}{2} \right)
On further evaluating we get,
2cos(4x2)sin(2x2)\Rightarrow 2\cos \left( \dfrac{4x}{2} \right)\sin \left( \dfrac{2x}{2} \right)
2cos(2x)sin(x)\Rightarrow 2\cos \left( 2x \right)\sin \left( x \right)
Now substitute this back into our equation and rewrite the terms accordingly.
y=cos2x2cos(2x)sin(x)\Rightarrow y=\dfrac{\cos 2x}{2\cos \left( 2x \right)\sin \left( x \right)}
Now rearrange the terms,
y=12(cos2xcos2x)(1sin(x))\Rightarrow y=\dfrac{1}{2}\left( \dfrac{\cos 2x}{\cos 2x} \right)\left( \dfrac{1}{\sin \left( x \right)} \right)
We can further represent one of the terms as, 1sin(x)=cosecx\dfrac{1}{\sin \left( x \right)}=\cos ecx
Hence 12cosecx,cos2x0\dfrac{1}{2}\cos ecx,\cos 2x\ne 0
Writing the general equation for coes2x0coes2x\ne 0
Here, 2x(2n+1)π2;n=0,±1,±2.....2x\ne \left( 2n+1 \right)\dfrac{\pi }{2};n=0,\pm 1,\pm 2.....
x(2n+1)π4\Rightarrow x\ne \left( 2n+1 \right)\dfrac{\pi }{4}
Now we know that 12cosecx12(1,1)=(12,12)\dfrac{1}{2}\cos ecx\notin \dfrac{1}{2}\left( -1,1 \right)=\left( -\dfrac{1}{2},\dfrac{1}{2} \right)
Now let us substitute the values to get the solutions.
For n=0n=0 ; xπ4x\ne \dfrac{\pi }{4}
For n=1n=1 ; x3π4x\ne \dfrac{3\pi }{4}
For n=2n=2 ; x5π4x\ne \dfrac{5\pi }{4}
For n=3n=3 ; x7π4x\ne \dfrac{7\pi }{4}
Hence all the values except π4,3π4,5π4,7π4\dfrac{\pi }{4},\dfrac{3\pi }{4},\dfrac{5\pi }{4},\dfrac{7\pi }{4} are the solution for the trigonometric expression.
The graph for the trigonometric function is as follows.

Note: Whenever complex equations are given to solve one must always Firstly start from the complex side and then convert all the terms into sinθ\sin \theta or cosθ\cos \theta . Then combine them into single fractions. Now it is most likely to use Trigonometric identities for the transformations if there are any.
Know when and where to apply the Subtraction-Addition formula. Must check where the Trigonometric functions become negative in which Quadrant to easily find the values in the given range.