Solveeit Logo

Question

Question: How do you find all critical point and determine the min, max and inflection given \(f\left( x \righ...

How do you find all critical point and determine the min, max and inflection given f(x)=x44x3+20f\left( x \right)={{x}^{4}}-4{{x}^{3}}+20 ?

Explanation

Solution

First to find the critical point find the derivative of the function f(x)f\left( x \right) i.e., f(x)=0{f}'\left( x \right)=0 . After evaluation find the values of xx which will then be the critical points of the function. Now find the second derivative and if it is a positive value then the function’s minimum is at the critical point. To find the inflection points, perform f(x)=0{f}''\left( x \right)=0 The values of xx hence obtained will be inflection points.

Complete step-by-step solution:
The given polynomial is f(x)=x44x3+20f\left( x \right)={{x}^{4}}-4{{x}^{3}}+20
Now let us first find the first derivative of the function, f(x){f}'\left( x \right)
f(x)=4x312x2\Rightarrow {f}'\left( x \right)=4{{x}^{3}}-12{{x}^{2}}
Now let us find the second derivative, f(x){f}''\left( x \right)
f(x)=12x224x\Rightarrow {f}''\left( x \right)=12{{x}^{2}}-24{{x}^{{}}}
To find the critical point we need to find f(x)=0{f}'\left( x \right)=0
f(x)=4x312x2=0\Rightarrow {f}'\left( x \right)=4{{x}^{3}}-12{{x}^{2}}=0
x2(4x12)=0\Rightarrow {{x}^{2}}\left( 4x-12 \right)=0
Now split the above expression to get the factors.
x=0;(4x12=0)\Rightarrow x=0;\left( 4x-12=0 \right)
x=0;x=124\Rightarrow x=0;x=\dfrac{12}{4}
Hence the critical points are given by the values x=0;x=3x=0;x=3
Now substitute these values in the function.
f(0)=044(0)3+20=20f\left( 0 \right)={{0}^{4}}-4{{\left( 0 \right)}^{3}}+20=20
f(3)=344(3)3+20=7f\left( 3 \right)={{3}^{4}}-4{{\left( 3 \right)}^{3}}+20=-7
The value of f(x){f}'\left( x \right) is decreasing from [,0)\left[ -\infty ,0 \right) and further decreasing till [0,3)\left[ 0,3 \right).
Further, the curve increases from [0,3)[3,)\left[ 0,3 \right)\to \left[ 3,\infty \right)
Hence the local minima will be (3,7)\left( 3,-7 \right)
Now find the inflection points.
For that, we need to find f(x)=0{f}''\left( x \right)=0
f(x)=12x224x=0\Rightarrow {f}''\left( x \right)=12{{x}^{2}}-24x=0
x(12x24)=0\Rightarrow x\left( 12x-24 \right)=0
Now split the above expression to get the factors of xx .
x=0;(12x24=0)\Rightarrow x=0;\left( 12x-24=0 \right)
x=0;x=2412\Rightarrow x=0;x=\dfrac{24}{12}
Hence the values of inflection points are x=0;x=2x=0;x=2
If the sign of f(x){f}'\left( x \right) does not change as xx increases through cc , such point is known as point of inflection.
The value of f(x){f}'\left( x \right) is decreasing from [,0)\left[ -\infty ,0 \right) and further decreasing till [0,3)\left[ 0,3 \right).
Further, the curve decreases from [0,2)[2,3)\left[ 0,2 \right)\to \left[ 2,3 \right)
The sign of f(x){f}'\left( x \right) remains the same.
Now substitute these values to get the coordinates.
f(0)=044(0)3+20=20f\left( 0 \right)={{0}^{4}}-4{{\left( 0 \right)}^{3}}+20=20
f(2)=244(2)3+20=4f\left( 2 \right)={{2}^{4}}-4{{\left( 2 \right)}^{3}}+20=4
The inflection points are hence, (0,20);(2,4)\left( 0,20 \right);\left( 2,4 \right)

Note: If the sign of f(x){f}'\left( x \right) shifts from positive to negative as the value of xx increases through cc , f(x)>0{f}'\left( x \right)>0 at every point to the left of cc and f(x)<0{f}'\left( x \right)<0 to every point right of cc , then the point cc is said to be the local maxima.
If the sign of f(x){f}'\left( x \right) shifts from negative to positive as the value of xx increases through cc , f(x)>0{f}'\left( x \right)>0 at every point to the right of cc and f(x)<0{f}'\left( x \right)<0 to every point left of cc , then the point cc is said to be the local minima.