Solveeit Logo

Question

Question: How do you find absolute minimum and maximum in calculus?...

How do you find absolute minimum and maximum in calculus?

Explanation

Solution

We first explain the concept and then take an example of f(x)=x36x29x2f\left( x \right)=-{{x}^{3}}-6{{x}^{2}}-9x-2. We equate it with 0. Extremum points in a curve have slope value 0. We solve the quadratic solution to find the coordinates and the points.

Complete step by step answer:
To find the extremum points we need to find the slope of a function and also the value of the point where the slope will be 0. Extremum points in a curve have slope value 0.
The slope of the function can be found from the derivative of the function f(x)=ddx[f(x)]{{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ f\left( x \right) \right]
We now take an example to understand the concept better. We find the relative extrema of the function f(x)=x36x29x2f\left( x \right)=-{{x}^{3}}-6{{x}^{2}}-9x-2.

We differentiate both sides of the function f(x)=x36x29x2f\left( x \right)=-{{x}^{3}}-6{{x}^{2}}-9x-2 with respect to xx.
f(x)=x36x29x2 f(x)=ddx[f(x)]=ddx[x36x29x2] \begin{aligned} & f\left( x \right)=-{{x}^{3}}-6{{x}^{2}}-9x-2 \\\ & \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ -{{x}^{3}}-6{{x}^{2}}-9x-2 \right] \\\ \end{aligned}.
We know that the differentiation form for nth{{n}^{th}} power of xx is ddx[xn]=nxn1\dfrac{d}{dx}\left[ {{x}^{n}} \right]=n{{x}^{n-1}}.
Therefore, f(x)=ddx(x3)+ddx(6x2)+ddx(9x)+ddx(2)=3x212x9{{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left( -{{x}^{3}} \right)+\dfrac{d}{dx}\left( -6{{x}^{2}} \right)+\dfrac{d}{dx}\left( -9x \right)+\dfrac{d}{dx}\left( -2 \right)=-3{{x}^{2}}-12x-9.
To find the xx coordinates of the extremum point we take 3x212x9=0-3{{x}^{2}}-12x-9=0.
Solving the given quadratic equation
3x212x9=0 x2+4x+3=0 \begin{aligned} & -3{{x}^{2}}-12x-9=0 \\\ & \Rightarrow {{x}^{2}}+4x+3=0 \\\ \end{aligned}
We know for a general equation of quadratic ax2+bx+c=0a{{x}^{2}}+bx+c=0, the value of the roots of x will be x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}.
In the given equation we have x2+4x+3=0{{x}^{2}}+4x+3=0. The values of a,b,ca,b,c is 1,4,31,4,3 respectively.
We put the values and get xx as x=4±424×1×32×1=4±42=4±22=1,3x=\dfrac{-4\pm \sqrt{{{4}^{2}}-4\times 1\times 3}}{2\times 1}=\dfrac{-4\pm \sqrt{4}}{2}=\dfrac{-4\pm 2}{2}=-1,-3.
Therefore, from the value of the xx coordinates of the extremum points, we find their yy coordinates.
We put values of x=1,3x=-1,-3 in f(x)=x36x29x2f\left( x \right)=-{{x}^{3}}-6{{x}^{2}}-9x-2.
For x=1x=-1, the value of y=f(1)=(1)36(1)29(1)2=2y=f\left( -1 \right)=-{{\left( -1 \right)}^{3}}-6{{\left( -1 \right)}^{2}}-9\left( -1 \right)-2=2.
For x=3x=-3, the value of y=f(3)=(3)36(3)29(3)2=2y=f\left( -3 \right)=-{{\left( -3 \right)}^{3}}-6{{\left( -3 \right)}^{2}}-9\left( -3 \right)-2=-2.
Therefore, the extremum points are (1,2);(3,2)\left( -1,2 \right);\left( -3,-2 \right).

Note: We also can find which point is maxima and minima by finding f(x)=ddx[f(x)]{{f}^{''}}\left( x \right)=\dfrac{d}{dx}\left[ {{f}^{'}}\left( x \right) \right]. If for x=a,bx=a,b, we find f(x){{f}^{''}}\left( x \right) being negative value then the point is maxima and f(x){{f}^{''}}\left( x \right) being positive value then the point is minima.
For f(x)=3x212x9{{f}^{'}}\left( x \right)=-3{{x}^{2}}-12x-9, we get f(x)=6x12{{f}^{''}}\left( x \right)=-6x-12.
At x=1x=-1, f(1)=6<0{{f}^{''}}\left( -1 \right)=-6<0. The point (1,2)\left( -1,2 \right) is maxima.
At x=3x=-3, f(3)=6>0{{f}^{''}}\left( -3 \right)=6>0. The point (3,2)\left( -3,-2 \right) is minima.