Solveeit Logo

Question

Question: How do you find a vector parametric equation \(r\left( t \right)\)for the line through points \(P = ...

How do you find a vector parametric equation r(t)r\left( t \right)for the line through points P=(3,1,1)P = \left( { - 3, - 1,1} \right)and Q=(8,4,5)Q = \left( { - 8, - 4,5} \right). If r(6)=Pr\left( 6 \right) = P and r(10)=Qr\left( {10} \right) = Q

Explanation

Solution

Given the coordinates. We have to find the parametric equation for the line. First, we will determine the parametric equation at x=6x = 6 and then at x=10x = 10. Then, solve the equations for by eliminating one variable and solve for another variable. Later, substitute the value of the variable and solve for the variable. Then, determine the y-parametric equations by substituting the y-coordinates into the equation. Solve the equations to determine the z-parametric equations by substituting z-coordinates into the equation.

Formula used:
The general form of vector parametric equation is given by:
r(t)=(xp,yp,zp)+t(xv,yv,zv)r\left( t \right) = \left( {{x_p},{y_p},{z_p}} \right) + t\left( {{x_v},{y_v},{z_v}} \right)
Where the parametric equations are
x=txv+xpx = t{x_v} + {x_p}
y=tyv+ypy = t{y_v} + {y_p}
z=tzv+zpz = t{z_v} + {z_p}

Complete step by step answer:
We are given the points P=(3,1,1)P = \left( { - 3, - 1,1} \right) and Q=(8,4,5)Q = \left( { - 8, - 4,5} \right). First, we will write the parametric equations for x-coordinate.
x=txv+xp\Rightarrow x = t{x_v} + {x_p}
Now, substitute t=6t = 6 and x=3x = - 3 into the equation.
3=6xv+xp\Rightarrow - 3 = 6{x_v} + {x_p} -----(1)
Then, substitute t=10t = 10 and x=8x = - 8 into the equation.
8=10xv+xp\Rightarrow - 8 = 10{x_v} + {x_p} -----(2)

Subtract the equation (1) from equation (2) to eliminate xp{x_p}.
8(3)=10xv6xv+xpxp\Rightarrow - 8 - \left( { - 3} \right) = 10{x_v} - 6{x_v} + {x_p} - {x_p}
5=4xv\Rightarrow - 5 = 4{x_v}
xv=54\Rightarrow {x_v} = - \dfrac{5}{4}

Now, substitute the value of xv{x_v} into the equation (1), we get:
3=6(54)+xp\Rightarrow - 3 = 6\left( { - \dfrac{5}{4}} \right) + {x_p}
3=152+xp\Rightarrow - 3 = - \dfrac{{15}}{2} + {x_p}
3+152=xp\Rightarrow - 3 + \dfrac{{15}}{2} = {x_p}
92=xp\Rightarrow \dfrac{9}{2} = {x_p}

Now, we will determine the y-parametric equation by substituting t=6t = 6 and y=1y = - 1 into the equation.
1=6yv+yp\Rightarrow - 1 = 6{y_v} + {y_p} -----(3)
Then, substitute t=10t = 10 and y=4y = - 4 into the equation.
4=10yv+yp\Rightarrow - 4 = 10{y_v} + {y_p} -----(4)

Subtract the equation (3) from equation (4) to eliminate yp{y_p}.
4(1)=10yv6yv+ypyp\Rightarrow - 4 - \left( { - 1} \right) = 10{y_v} - 6{y_v} + {y_p} - {y_p}
3=4yv\Rightarrow - 3 = 4{y_v}
yv=34\Rightarrow {y_v} = - \dfrac{3}{4}

Now, substitute the value of yv{y_v} into the equation (3), we get:
1=6(34)+yp\Rightarrow - 1 = 6\left( { - \dfrac{3}{4}} \right) + {y_p}
1=92+yp\Rightarrow - 1 = - \dfrac{9}{2} + {y_p}
1+92=yp\Rightarrow - 1 + \dfrac{9}{2} = {y_p}
72=yp\Rightarrow \dfrac{7}{2} = {y_p}

Now, we will determine the z-parametric equation by substituting t=6t = 6 and z=1z = 1 into the equation.
1=6zv+zp\Rightarrow 1 = 6{z_v} + {z_p} ----(5)
Then, substitute t=10t = 10 and z=5z = 5 into the equation.
5=10zv+zp\Rightarrow 5 = 10{z_v} + {z_p} -----(6)

Subtract the equation (5) from equation (6) to eliminate zp{z_p}.
51=10zv6zv+zpzp\Rightarrow 5 - 1 = 10{z_v} - 6{z_v} + {z_p} - {z_p}
4=4zv\Rightarrow 4 = 4{z_v}
zv=1\Rightarrow {z_v} = 1

Now, substitute the value of zv{z_v} into the equation (5), we get:
1=6(1)+zp\Rightarrow 1 = 6\left( 1 \right) + {z_p}
1=6+zp\Rightarrow 1 = 6 + {z_p}
16=zp\Rightarrow 1 - 6 = {z_p}
5=zp\Rightarrow - 5 = {z_p}
Substitute the values into the general form of vector parametric equation r(t)=(xp,yp,zp)+t(xv,yv,zv)r\left( t \right) = \left( {{x_p},{y_p},{z_p}} \right) + t\left( {{x_v},{y_v},{z_v}} \right)
r(t)=(92,72,5)+t(54,34,1)\Rightarrow r\left( t \right) = \left( {\dfrac{9}{2},\dfrac{7}{2}, - 5} \right) + t\left( { - \dfrac{5}{4}, - \dfrac{3}{4},1} \right)

Hence, the vector parametric equation for the line is r(t)=(92,72,5)+t(54,34,1)r\left( t \right) = \left( {\dfrac{9}{2},\dfrac{7}{2}, - 5} \right) + t\left( { - \dfrac{5}{4}, - \dfrac{3}{4},1} \right)

Note: The vector parametric equation of the line passing through the points is determined by writing the x, y and z coordinates of the parametric equation plus the coordinates of the vector equation.